ترغب بنشر مسار تعليمي؟ اضغط هنا

Raman spectroscopic signature of fractionalized excitations in the harmonic-honeycomb iridates $beta$- and $gamma$-Li$_2$IrO$_3$

104   0   0.0 ( 0 )
 نشر من قبل Seunghwan Do
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The fractionalization of elementary excitations in quantum spin systems is a central theme in current condensed matter physics. The Kitaev honeycomb spin model provides a prominent example of exotic fractionalized quasiparticles, composed of itinerant Majorana fermions and gapped gauge fluxes. However, identification of the Majorana fermions in a three-dimensional honeycomb lattice remains elusive. Here we report spectroscopic signatures of fractional excitations in the harmonic-honeycomb iridates $beta$- and $gamma$-Li$_2$IrO$_3$. Using polarization resolved Raman spectroscopy, we find that the dynamical Raman response of $beta$- and $gamma$-Li$_2$IrO$_3$ features a broad scattering continuum with distinct polarization and composition dependence. The temperature dependence of the Raman spectral weight is dominated by the thermal damping of fermionic excitations. These results suggest the emergence of Majorana fermions from spin fractionalization in a three-dimensional Kitaev-Heisenberg system.



قيم البحث

اقرأ أيضاً

We report equilibrium and nonequilibrium optical measurements on the recently synthesized harmonic honeycomb iridate gamma-Li$_2$IrO$_3$ (LIO), as well as the layered honeycomb iridate Na$_2$IrO$_3$ (NIO). Using Fourier transform infrared microscopy we performed reflectance measurements on LIO, from which we obtained the optical conductivity below 2 eV. In addition we measured the photoinduced changed in reflectance, Delta R, as a function of time, t, temperature, T, and probe field polarization in both LIO and NIO. In LIO, Delta R(t,T) is anisotropic and comprised of three T dependent components. Two of these components are related to the onset of magnetic order and the third is related to a photoinduced population of metastable electronic excited states. In NIO, Delta R(t,T) has a single T dependent component that is strikingly similar to the electronic excitation component of Delta R in LIO. Through analysis and comparison of Delta R(t,T) for two compounds, we extract information on the onset of magnetic correlations at and above the transition temperature in LIO, the bare spin-flip scattering rate in equilibrium, the lifetime of low-lying quasiparticle excitations, and the polarization dependence of optical transitions that are sensitive to magnetic order.
We studied the effect of external pressure on the electrodynamic properties of $alpha$-Li$_2$IrO$_3$ single crystals in the frequency range of the phonon modes and the Ir $d$-$d$ transitions. The abrupt hardening of several phonon modes under pressur e supports the onset of the dimerized phase at the critical pressure $P_c$=3.8 GPa. With increasing pressure an overall decrease in spectral weight of the Ir $d$-$d$ transitions is found up to $P_c$. Above $P_c$, the local (on-site) $d$-$d$ excitations gain spectral weight with increasing pressure, which hints at a pressure-induced increase in the octahedral distortions. The non-local (intersite) Ir $d$-$d$ transitions show a monotonic blue-shift and decrease in spectral weight. The changes observed for the non-local excitations are most prominent well above $P_c$, namely for pressures $geq$12 GPa, and only small changes occur for pressures close to $P_c$. The profile of the optical conductivity at high pressures ($sim$20 GPa) appears to be indicative for the dimerized state in iridates.
$^7$Li nuclear magnetic resonance (NMR) and terahertz (THz) spectroscopies are used to probe magnetic excitations and their field dependence in the hyperhoneycomb Kitaev magnet $beta$-Li$_2$IrO$_3$. Spin-lattice relaxation rate ($1/T_1$) measured dow n to 100,mK indicates gapless nature of the excitations at low fields (below $H_csimeq 2.8$,T), in contrast to the gapped magnon excitations found in the honeycomb Kitaev magnet $alpha$-RuCl$_3$ at zero applied magnetic field. At higher temperatures in $beta$-Li$_2$IrO$_3$, $1/T_1$ passes through a broad maximum without any clear anomaly at the Neel temperature $T_Nsimeq 38$,K, suggesting the abundance of low-energy excitations that are indeed observed as two peaks in the THz spectra, both correspond to zone-center magnon excitations. At higher fields (above $H_c$), an excitation gap opens, and a re-distribution of the THz spectral weight is observed without any indication of an excitation continuum, in contrast to $alpha$-RuCl$_3$ where an excitation continuum was reported.
The family of edge-sharing tri-coordinated iridates and ruthenates has emerged in recent years as a major platform for Kitaev spin liquid physics, where spins fractionalize into emergent magnetic fluxes and Majorana fermions with Dirac-like dispersio ns. While such exotic states are usually pre-empted by long-range magnetic order at low temperatures, signatures of Majorana fermions with long coherent times have been predicted to manifest at intermediate and higher energy scales, similar to the observation of spinons in quasi-1D spin chains. Here we present a Resonant Inelastic X-ray Scattering study of the magnetic excitations of the hyperhoneycomb iridate $beta$-Li$_2$IrO$_3$ under a magnetic field with a record-high-resolution spectrometer. At low-temperatures, dispersing spin waves can be resolved around the predicted intertwined incommensurate spiral and field-induced zigzag orders, whose excitation energy reaches a maximum of 16meV. A 2T magnetic field softens the dispersion around ${bf Q}=0$. The behavior of the spin waves under magnetic field is consistent with our semiclassical calculations for the ground state and the dynamical spin structure factor, which further predicts that the ensued intertwined uniform states remain robust up to very high fields (100 T). Most saliently, the low-energy magnon-like mode is superimposed by a broad continuum of excitations, centered around 35meV and extending up to 100meV. This high-energy continuum survives up to at least 300K -- well above the ordering temperature of 38K -- and gives evidence for pairs of long-lived Majorana fermions of the proximate Kitaev spin liquid.
A family of insulating iridates with chemical formula Li$_2$IrO$_3$ has recently been discovered, featuring three distinct crystal structures $alpha,beta,gamma$ (honeycomb, hyperhoneycomb, stripyhoneycomb). Measurements on the three-dimensional polyt ypes, $beta$- and $gamma$-Li$_2$IrO$_3$, found that they magnetically order into remarkably similar spiral phases, exhibiting a non-coplanar counter-rotating spiral magnetic order with equivalent q=0.57 wavevectors. We examine magnetic Hamiltonians for this family and show that the same triplet of nearest-neighbor Kitaev-Heisenberg-Ising (KJI) interactions reproduces this spiral order on both $beta,gamma$-Li$_2$IrO$_3$ structures. We analyze the origin of this phenomenon by studying the model on a 1D zigzag chain, a structural unit common to the three polytypes. The zigzag-chain solution transparently shows how the Kitaev interaction stabilizes the counter-rotating spiral, which is shown to persist on restoring the inter-chain coupling. Our minimal model makes a concrete prediction for the magnetic order in $alpha$-Li$_2$IrO$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا