ﻻ يوجد ملخص باللغة العربية
We present simultaneous ground-based radial velocity (RV) measurements and space-based photometric measurements of the young and active K dwarf Epsilon Eridani. These measurements provide a data set for exploring methods of identifying and ultimately distinguishing stellar photospheric velocities from Keplerian motion. We compare three methods we have used in exploring this data set: Dalmatian, an MCMC spot modeling code that fits photometric and RV measurements simultaneously; the FF$$ method, which uses photometric measurements to predict the stellar activity signal in simultaneous RV measurements; and H$alpha$ analysis. We show that our H$alpha$ measurements are strongly correlated with photometry from the Microvariability and Oscillations of STars (MOST) instrument, which led to a promising new method based solely on the spectroscopic observations. This new method, which we refer to as the HH$$ method, uses H$alpha$ measurements as input into the FF$$ model. While the Dalmatian spot modeling analysis and the FF$$ method with MOST space-based photometry are currently more robust, the HH$$ method only makes use of one of the thousands of stellar lines in the visible spectrum. By leveraging additional spectral activity indicators, we believe the HH$$ method may prove quite useful in disentangling stellar signals.
The young and magnetically active K dwarf Epsilon Eridani exhibits a chromospheric activity cycle of about 3 years. Previous reconstructions of its large-scale magnetic field show strong variations at yearly epochs. To understand how Epsilon Eridanis
We report on observations of the active K2 dwarf $epsilon$ Eridani based on contemporaneous SPIRou, NARVAL, and TESS data obtained over two months in late 2018, when the activity of the star was reported to be in a non-cyclic phase. We first recover
In 2015 we started the XMM-Newton monitoring of the young solar-like star Epsilon Eridani (440 Myr), one of the youngest solar-like stars with a known chromospheric CaII cycle. By analyzing the most recent Mount Wilson S-index CaII data of this star,
During the last decade, the relation between activity cycle periods with stellar parameters has received special attention. The construction of reliable registries of activity reveals that solar type stars exhibit activity cycles with periods from fe
We conducted photometric and spectroscopic observations for Ross 15 in order to further study the flare properties of this less observed flare star. A total of 28 B-band flares are detected in 128 hours of photometric observations, leading to a total