ﻻ يوجد ملخص باللغة العربية
We have performed angle-resolved photoemission spectroscopy on HfSiS, which has been predicted to be a topological line-node semimetal with square Si lattice. We found a quasi-two-dimensional Fermi surface hosting bulk nodal lines, alongside the surface states at the Brillouin-zone corner exhibiting a sizable Rashba splitting and band-mass renormalization due to many-body interactions. Most notably, we discovered an unexpected Dirac-like dispersion extending one-dimensionally in k space - the Dirac-node arc - near the bulk node at the zone diagonal. These novel Dirac states reside on the surface and could be related to hybridizations of bulk states, but currently we have no explanation for its origin. This discovery poses an intriguing challenge to the theoretical understanding of topological line-node semimetals.
Graphene, a two dimensional (2D) carbon sheet, acquires many of its amazing properties from the Dirac point nature of its electronic structures with negligible spin-orbit coupling. Extending to 3D space, graphene networks with negative curvature, cal
Topological semimetals recently stimulate intense research activities. Combining first-principles calculations and effective model analysis, we predict that CaTe is topological node-line semimetal when spin-orbit coupling (SOC) is ignored. We also ob
We have performed angle-resolved photoemission spectroscopy (ARPES) on layered ternary compounds ZrGeXc (Xc = S, Se, and Te) with square Ge lattices. ARPES measurements with bulk-sensitive soft-x-ray photons revealed a quasi-two-dimensional bulk-band
In the recently discovered topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with a unique set of characteristics. Among the theoretical predictions for TCIs is the possibility of imparting m
We report the observation of a non-trivial spin texture in Dirac node arcs, novel topological objects formed when Dirac cones of massless particles extend along an open one-dimensional line in momentum space. We find that such states are present in a