ﻻ يوجد ملخص باللغة العربية
We consider tangent cones of Schubert varieties in the complete flag variety, and investigate the problem when the tangent cones of two different Schubert varieties coincide. We give a sufficient condition for such coincidence, and formulate a conjecture that provides a necessary condition. In particular, we show that all Schubert varieties corresponding to the Coxeter elements of the Weyl group have the same tangent cone. Our main tool is the notion of pillar entries in the rank matrix counting the dimensions of the intersections of a given flag with the standard one. This notion is a version of Fultons essential set. We calculate the dimension of a Schubert variety in terms of the pillar entries of the rank matrix.
This paper defines and studies permutation representations on the equivariant cohomology of Schubert varieties, as representations both over C and over C[t_1, t_2,...,t_n]. We show these group actions are the same as an action of simple transposition
In type A we find equivalences of geometries arising in three settings: Nakajimas (``framed) quiver varieties, conjugacy classes of matrices and loop Grassmannians. These are now all given by explicit formulas. As an application we provide a geometri
The first author and Bump defined Schubert Eisenstein series by restricting the summation in a degenerate Eisenstein series to a particular Schubert variety. In the case of $mathrm{GL}_3$ over $mathbb{Q}$ they proved that these Schubert Eisenstein se
Regular semisimple Hessenberg varieties are a family of subvarieties of the flag variety that arise in number theory, numerical analysis, representation theory, algebraic geometry, and combinatorics. We give a Giambelli formula expressing the classes
Let $G$ be a connected reductive algebraic group over an algebraically closed field $k$, and assume that the characteristic of $k$ is zero or a pretty good prime for $G$. Let $P$ be a parabolic subgroup of $G$ and let $mathfrak p$ be the Lie algebra