ﻻ يوجد ملخص باللغة العربية
Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization entangled pairs from parametric down conversion and mapping one photon of each pair onto a rare-earth-ion doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witness, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method useful for the characterisation of multiplexed quantum memories.
We demonstrate an efficient experimental scheme for producing polarization-entangled photon pairs from spontaneous four-wave mixing (SFWM) in a laser-cooled $^{85}$Rb atomic ensemble, with a bandwidth (as low as 0.8 MHz) much narrower than the rubidi
High-precision nonlocal temporal correlation identification in the entangled photon pairs is critical to measure the time offset between remote independent time scales for many quantum information applications. The first nonlocal correlation identifi
The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of trigge
Two-photon interference of multimode two-photon pairs produced by an optical parametric oscillator has been observed for the first time with an unbalanced interferometer. The time correlation between the multimode two photons has a multi-peaked struc
Quantum networks are essential for realising distributed quantum computation and quantum communication. Entangled photons are a key resource, with applications such as quantum key distribution, quantum relays, and quantum repeaters. All components in