ترغب بنشر مسار تعليمي؟ اضغط هنا

The optimality of coarse categories in decision-making and information storage

161   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Michael Mandler




اسأل ChatGPT حول البحث

An agent who lacks preferences and instead makes decisions using criteria that are costly to create should select efficient sets of criteria, where the cost of making a given number of choice distinctions is minimized. Under mild conditions, efficiency requires that binary criteria with only two categories per criterion are chosen. When applied to the problem of determining the optimal number of digits in an information storage device, this result implies that binary digits (bits) are the efficient solution, even when the marginal cost of using additional digits declines rapidly to 0. This short paper pays particular attention to the symmetry conditions entailed when sets of criteria are efficient.



قيم البحث

اقرأ أيضاً

154 - Shuo Li , Matteo Pozzi 2021
Decision makers involved in the management of civil assets and systems usually take actions under constraints imposed by societal regulations. Some of these constraints are related to epistemic quantities, as the probability of failure events and the corresponding risks. Sensors and inspectors can provide useful information supporting the control process (e.g. the maintenance process of an asset), and decisions about collecting this information should rely on an analysis of its cost and value. When societal regulations encode an economic perspective that is not aligned with that of the decision makers, the Value of Information (VoI) can be negative (i.e., information sometimes hurts), and almost irrelevant information can even have a significant value (either positive or negative), for agents acting under these epistemic constraints. We refer to these phenomena as Information Avoidance (IA) and Information OverValuation (IOV). In this paper, we illustrate how to assess VoI in sequential decision making under epistemic constraints (as those imposed by societal regulations), by modeling a Partially Observable Markov Decision Processes (POMDP) and evaluating non optimal policies via Finite State Controllers (FSCs). We focus on the value of collecting information at current time, and on that of collecting sequential information, we illustrate how these values are related and we discuss how IA and IOV can occur in those settings.
358 - V.I. Yukalov , D. Sornette 2016
A rigorous general definition of quantum probability is given, which is valid for elementary events and for composite events, for operationally testable measurements as well as for inconclusive measurements, and also for non-commuting observables in addition to commutative observables. Our proposed definition of quantum probability makes it possible to describe quantum measurements and quantum decision making on the same common mathematical footing. Conditions are formulated for the case when quantum decision theory reduces to its classical counterpart and for the situation where the use of quantum decision theory is necessary.
Entropy-based measures are an important tool for studying human gaze behavior under various conditions. In particular, gaze transition entropy (GTE) is a popular method to quantify the predictability of fixation transitions. However, GTE does not acc ount for temporal dependencies beyond two consecutive fixations and may thus underestimate a scanpaths actual predictability. Instead, we propose to quantify scanpath predictability by estimating the active information storage (AIS), which can account for dependencies spanning multiple fixations. AIS is calculated as the mutual information between a processes multivariate past state and its next value. It is thus able to measure how much information a sequence of past fixations provides about the next fixation, hence covering a longer temporal horizon. Applying the proposed approach, we were able to distinguish between induced observer states based on estimated AIS, providing first evidence that AIS may be used in the inference of user states to improve human-machine interaction.
We study the design of autonomous agents that are capable of deceiving outside observers about their intentions while carrying out tasks in stochastic, complex environments. By modeling the agents behavior as a Markov decision process, we consider a setting where the agent aims to reach one of multiple potential goals while deceiving outside observers about its true goal. We propose a novel approach to model observer predictions based on the principle of maximum entropy and to efficiently generate deceptive strategies via linear programming. The proposed approach enables the agent to exhibit a variety of tunable deceptive behaviors while ensuring the satisfaction of probabilistic constraints on the behavior. We evaluate the performance of the proposed approach via comparative user studies and present a case study on the streets of Manhattan, New York, using real travel time distributions.
Due to the fact that basic uncertain information provides a simple form for decision information with certainty degree, it has been developed to reflect the quality of observed or subjective assessments. In order to study the algebra structure and pr eference relation of basic uncertain information, we develop some algebra operations for basic uncertain information. The order relation of such type of information has also been considered. Finally, to apply the developed algebra operations and order relations, a generalized TODIM method for multi-attribute decision making with basic uncertain information is given. The numerical example shows that the developed decision procedure is valid.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا