ﻻ يوجد ملخص باللغة العربية
We compute the isotropic gravitational wave (GW) background produced by binary supermassive black holes (SBHs) in galactic nuclei. In our model, massive binaries evolve at early times via gravitational-slingshot interaction with nearby stars, and at later times by the emission of GWs. Our expressions for the rate of binary hardening in the stellar regime are taken from the recent work of Vasiliev et al., who show that in the non-axisymmetric galaxies expected to form via mergers, stars are supplied to the center at high enough rates to ensure binary coalescence on Gyr timescales. We also include, for the first time, the extra degrees of freedom associated with evolution of the binarys orbital plane; in rotating nuclei, interaction with stars causes the orientation and the eccentricity of a massive binary to change in tandem, leading in some cases to very high eccentricities (e>0.9) before the binary enters the GW-dominated regime. We argue that previous studies have over-estimated the mean ratio of SBH mass to galaxy bulge mass by factors of 2 - 3. In the frequency regime currently accessible to pulsar timing arrays (PTAs), our assumptions imply a factor 2 - 3 reduction in the characteristic strain compared with the values computed in most recent studies, removing the tension that currently exists between model predictions and the non-detection of GWs.
Interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binarys orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can
We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i)~stellar-origin black-hole binaries~(
We study the dynamical evolution of eccentric massive black hole binaries (MBHBs) interacting with unbound stars by means of an extensive set of three body scattering experiments. Compared to previous studies, we extend the investigation down to a MB
Space-borne gravitational wave detectors like TianQin are expected to detect gravitational wave signals emitted by the mergers of massive black hole binaries. Luminosity distance information can be obtained from gravitational wave observations, and o
We propose a new formation channel for intermediate mass black hole (IMBH) binaries via globular cluster collisions in the Galactic disc. Using numerical simulations, we show that the IMBHs form a tight binary that enters the gravitational waves (GWs