ﻻ يوجد ملخص باللغة العربية
The maximum matching width is a width-parameter that is defined on a branch-decomposition over the vertex set of a graph. The size of a maximum matching in the bipartite graph is used as a cut-function. In this paper, we characterize the graphs of maximum matching width at most 2 using the minor obstruction set. Also, we compute the exact value of the maximum matching width of a grid.
A signed graph is a pair $(G,Sigma)$, where $G=(V,E)$ is a graph (in which parallel edges are permitted, but loops are not) with $V={1,ldots,n}$ and $Sigmasubseteq E$. The edges in $Sigma$ are called odd and the other edges of $E$ even. By $S(G,Sigma
A graph is called $2K_2$-free if it does not contain two independent edges as an induced subgraph. Mou and Pasechnik conjectured that every $frac{3}{2}$-tough $2K_2$-free graph with at least three vertices has a spanning trail with maximum degree at
A classic theorem by Steinitz states that a graph G is realizable by a convex polyhedron if and only if G is 3-connected planar. Zonohedra are an important subclass of convex polyhedra having the property that the faces of a zonohedron are parallelog
If the Laplacian matrix of a graph has a full set of orthogonal eigenvectors with entries $pm1$, then the matrix formed by taking the columns as the eigenvectors is a Hadamard matrix and the graph is said to be Hadamard diagonalizable. In this arti
Let $G$ be an $n$-vertex graph with adjacency matrix $A$, and $W=[e,Ae,ldots,A^{n-1}e]$ be the walk matrix of $G$, where $e$ is the all-one vector. In Wang [J. Combin. Theory, Ser. B, 122 (2017): 438-451], the author showed that any graph $G$ is uniq