ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the mass of the planet(s) sculpting a disk cavity. The intriguing case of 2MASS J16042165-2130284

60   0   0.0 ( 0 )
 نشر من قبل H\\'ector C\\'anovas HC
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The large cavities observed in the dust and gas distributions of transition disks may be explained by planet-disk interactions. At ~145 pc, 2MASS J16042165-2130284 (J1604) is a 5-12 Myr old transitional disk with different gap sizes in the mm- and $mu$m-sized dust distributions (outer edges at ~79 and at ~63 au, respectively). Its $^{12}$CO emission shows a ~30 au cavity. This radial structure suggests that giant planets are sculpting this disk. We aim to constrain the masses and locations of plausible giant planets around J1604. We observed J1604 with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) at the Very Large Telescope (VLT), in IRDIFS_EXT, pupil-stabilized mode, obtaining YJH- band images with the integral field spectrograph (IFS) and K1K2-band images with the Infra-Red Dual-beam Imager and Spectrograph (IRDIS). The dataset was processed exploiting the angular differential imaging (ADI) technique with high-contrast algorithms. Our observations reach a contrast of $Delta K, YH$ ~12 mag from 0.15 to 0.80 (~22 to 115 au), but no planet candidate is detected. The disk is directly imaged in scattered light at all bands from Y to K, and it shows a red color. This indicates that the dust particles in the disk surface are mainly $gtrsim0.3,mu$m-sized grains. We confirm the sharp dip/decrement in scattered light in agreement with polarized light observations. Comparing our images with a radiative transfer model we argue that the southern side of the disk is most likely the nearest. This work represents the deepest search yet for companions around J1604. We reach a mass sensitivity of $gtrsim 2-3M_{Jup}$ from ~22 to ~115 au according to a hot start scenario. We propose that a brown dwarf orbiting inside of ~15 au and additional Jovian planets at larger radii could account for the observed properties of J1604 while explaining our lack of detection.



قيم البحث

اقرأ أيضاً

Studying the physical conditions in circumstellar disks is a crucial step toward understanding planet formation. Of particular interest is the case of HD 100546, a Herbig Be star that presents a gap within the first 13 AU of its protoplanetary disk, that may originate in the dynamical interactions of a forming planet. We gathered a large amount of new interferometric data using the AMBER/VLTI instrument in the H- and K-bands to spatially resolve the warm inner disk and constrain its structure. Then, combining these measurements with photometric observations, we analyze the circumstellar environment of HD 100546 in the light of a passive disk model based on 3D Monte-Carlo radiative transfer. Finally, we use hydrodynamical simulations of gap formation by planets to predict the radial surface density profile of the disk and test the hypothesis of ongoing planet formation. The SED and the NIR interferometric data are adequately reproduced by our model. We show that the H- and K-band emissions are coming mostly from the inner edge of the internal dust disk, located near 0.24 AU from the star, i.e., at the dust sublimation radius in our model. We directly measure an inclination of $33^{circ} pm 11^{circ}$ and a position angle of $140^{circ} pm 16^{circ}$ for the inner disk. This is similar to the values found for the outer disk ($i simeq 42^{circ}$, $PA simeq 145^{circ}$), suggesting that both disks may be coplanar. We finally show that 1 to 8 Jupiter mass planets located at $sim 8$ AU from the star would have enough time to create the gap and the required surface density jump of three orders of magnitude between the inner and outer disk. However, no information on the amount of matter left in the gap is available, which precludes us from setting precise limits on the planet mass, for now.
(Abridged) Circumstellar disks are believed to be the birthplace of planets and are expected to dissipate on a timescale of a few Myr. The processes responsible for the removal of the dust and gas will strongly modify the radial distribution of the d ust and consequently the SED. In particular, a young planet will open a gap, resulting in an inner disk dominating the near-IR emission and an outer disk emitting mostly in the far-IR. We analyze a full set of data (including VLTI/Pionier, VLTI/Midi, and VLT/NaCo/Sam) to constrain the structure of the transition disk around TCha. We used the Mcfost radiative transfer code to simultaneously model the SED and the interferometric observations. We find that the dust responsible for the emission in excess in the near-IR must have a narrow temperature distribution with a maximum close to the silicate sublimation temperature. This translates into a narrow inner dusty disk (0.07-0.11 AU). We find that the outer disk starts at about 12 AU and is partially resolved by the Pionier, Sam, and Midi instruments. We show that the Sam closure phases, interpreted as the signature of a candidate companion, may actually trace the asymmetry generated by forward scattering by dust grains in the upper layers of the outer disk. These observations help constrain the inclination and position angle of the outer disk. The presence of matter inside the gap is difficult to assess with present-day observations. Our model suggests the outer disk contaminates the interferometric signature of any potential companion that could be responsible for the gap opening, and such a companion still has to be unambiguously detected. We stress the difficulty to observe point sources in bright massive disks, and the consequent need to account for disk asymmetries (e.g. anisotropic scattering) in model-dependent search for companions.
The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (p roto)planets. The ALMA images triggered numerous theoretical studies based on disk-planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of 0.001 - 0.003 Msun, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.
We analyze the highest-resolution millimeter continuum and near-infrared (NIR) scattered-light images presented to date of the circumbinary disk orbiting V4046 Sgr, a ~20 Myr old actively accreting, close binary T Tauri star system located a mere 72. 4 pc from Earth. We observed the disk with the Atacama Large Millimeter/submillimeter Array (ALMA) at 870-micron during Cycle 4, and we analyze these data in conjunction with archival NIR (H band) polarimetric images obtained with SPHERE/IRDIS on the ESO Very Large Telescope. At 0.3 (20 au) resolution, the 870-micron image reveals a marginally resolved ring that peaks at ~32 au and has an extension of ~ 90 au. We infer a lower limit on dust mass of ~ 60.0 M_earth within the 870-micron ring, and confirm that the ring is well aligned with the larger-scale gaseous disk. A second, inner dust ring is also tentatively detected in the ALMA observations; its position appears coincident with the inner (~14 au radius) ring detected in scattered light. Using synthetic 870 micron and H-band images obtained from disk-planet interaction simulations, we attempt to constrain the mass of the putative planet orbiting at 20 au. Our trials suggest that a circumbinary Jovian-mass planet may be responsible for generating the dust ring and gap structures detected within the disk. We discuss the longevity of the gas-rich disk orbiting V4046 Sgr in the context of the binary nature of the system.
We present new high fidelity optical coronagraphic imagery of the inner $sim$50 au of AU Mics edge-on debris disk using the BAR5 occulter of the Hubble Space Telescope Imaging Spectrograph (HST/STIS) obtained on 26-27 July 2018. This new imagery reve als that feature A, residing at a projected stellocentric separation of 14.2 au on SE-side of the disk, exhibits an apparent loop-like morphology at the time of our observations. The loop has a projected width of 1.5 au and rises 2.3 au above the disk midplane. We also explored TESS photometric observations of AU Mic that are consistent with evidence of two starspot complexes in the system. The likely co-alignment of the stellar and disk rotational axes breaks degeneracies in detailed spot modeling, indicating that AU Mics projected magnetic field axis is offset from its rotational axis. We speculate that small grains in AU Mics disk could be sculpted by a time-dependent wind that is influenced by this offset magnetic field axis, analogous to co-rotating Solar interaction regions that sculpt and influence the inner and outer regions of our own Heliosphere. Alternatively, if the observed spot modulation is indicative of a significant mis-alignment of the stellar and disk rotational axes, we suggest the disk could still be sculpted by the differential equatorial versus polar wind that it sees with every stellar rotation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا