ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-scale retrospective relative spectro-photometric self-calibration in space

68   0   0.0 ( 0 )
 نشر من قبل Dida Markovi\\v{c}
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the application of relative self-calibration using overlap regions to spectroscopic galaxy surveys that use slit-less spectroscopy. This method is based on that developed for the SDSS by Padmanabhan at al. (2008) in that we consider jointly fitting and marginalising over calibrator brightness, rather than treating these as free parameters. However, we separate the calibration of the detector-to-detector from the full-focal-plane exposure-to-exposure calibration. To demonstrate how the calibration procedure will work, we simulate the procedure for a potential implementation of the spectroscopic component of the wide Euclid survey. We study the change of coverage and the determination of relative multiplicative errors in flux measurements for different dithering configurations. We use the new method to study the case where the flat-field across each exposure or detector is measured precisely and only exposure-to-exposure or detector-to-detector variation in the flux error remains. We consider several base dither patterns and find that they strongly influence the ability to calibrate, using this methodology. To enable self-calibration, it is important that the survey strategy connects different observations with at least a minimum amount of overlap, and we propose an S-pattern for dithering that fulfills this requirement. The final survey strategy adopted by Euclid will have to optimise for a number of different science goals and requirements. The large-scale calibration of the spectroscopic galaxy survey is clearly cosmologically crucial, but is not the only one.



قيم البحث

اقرأ أيضاً

117 - S. Davini 2021
We present a method for the in-flight relative flux self-calibration of a spectro-photometer instrument, general enough to be applied to any upcoming galaxy survey on satellite. The instrument response function, that accounts for a smooth continuous variation due to telescope optics, on top of a discontinuous effect due to the segmentation of the detector, is inferred with a $chi^2$ statistics. The method provides unbiased inference of the sources count rates and of the reconstructed relative response function, in the limit of high count rates. We simulate a simplified sequence of observations following a spatial random pattern and realistic distributions of sources and count rates, with the purpose of quantifying the relative importance of the number of sources and exposures for correctly reconstructing the instrument response. We present a validation of the method, with the definition of figures of merit to quantify the expected performance, in plausible scenarios.
134 - N. Regnault 2009
We present the photometric calibration of the Supernova Legacy Survey (SNLS) fields. The SNLS aims at measuring the distances to SNe Ia at (0.3<z<1) using MegaCam, the 1 deg^2 imager on the Canada-France-Hawaii Telescope (CFHT). The uncertainty affec ting the photometric calibration of the survey dominates the systematic uncertainty of the key measurement of the survey, namely the dark energy equation of state. The photometric calibration of the SNLS requires obtaining a uniform response across the imager, calibrating the science field stars in each survey band (SDSS-like ugriz bands) with respect to standards with known flux in the same bands, and binding the calibration to the UBVRI Landolt standards used to calibrate the nearby SNe from the literature necessary to produce cosmological constraints. The spatial non-uniformities of the imager photometric response are mapped using dithered observations of dense stellar fields. Photometric zero-points against Landolt standards are obtained. The linearity of the instrument is studied. We show that the imager filters and photometric response are not uniform and publish correction maps. We present models of the effective passbands of the instrument as a function of the position on the focal plane. We define a natural magnitude system for MegaCam. We show that the systematics affecting the magnitude-to-flux relations can be reduced if we use the spectrophotometric standard star BD +17 4708 instead of Vega as a fundamental flux standard. We publish ugriz catalogs of tertiary standards for all the SNLS fields.
Accurate photometric redshift calibration is central to the robustness of all cosmology constraints from cosmic shear surveys. Analyses of the KiDS re-weighted training samples from all overlapping spectroscopic surveys to provide a direct redshift c alibration. Using self-organising maps (SOMs) we demonstrate that this spectroscopic compilation is sufficiently complete for KiDS, representing $99%$ of the effective 2D cosmic shear sample. We use the SOM to define a $100%$ represented `gold cosmic shear sample, per tomographic bin. Using mock simulations of KiDS and the spectroscopic training set, we estimate the uncertainty on the SOM redshift calibration, and find that photometric noise, sample variance, and spectroscopic selection effects (including redshift and magnitude incompleteness) induce a combined maximal scatter on the bias of the redshift distribution reconstruction ($Delta langle z rangle=langle z rangle_{rm est}-langle z rangle_{rm true}$) of $sigma_{Delta langle z rangle} leq 0.006$ in all tomographic bins. We show that the SOM calibration is unbiased in the cases of noiseless photometry and perfectly representative spectroscopic datasets, as expected from theory. The inclusion of both photometric noise and spectroscopic selection effects in our mock data introduces a maximal bias of $Delta langle z rangle =0.013pm0.006$, or $Delta langle z rangle leq 0.025$ at $97.5%$ confidence, once quality flags have been applied to the SOM. The method presented here represents a significant improvement over the previously adopted direct redshift calibration implementation for KiDS, owing to its diagnostic and quality assurance capabilities. The implementation of this method in future cosmic shear studies will allow better diagnosis, examination, and mitigation of systematic biases in photometric redshift calibration.
We developed a code that estimates distances to stars using measured spectroscopic and photometric quantities. We employ a Bayesian approach to build the probability distribution function over stellar evolutionary models given these data, delivering estimates of model parameters for each star individually. The code was first tested on simulations, successfully recovering input distances to mock stars with <1% bias.The method-intrinsic random distance uncertainties for typical spectroscopic survey measurements amount to around 10% for dwarf stars and 20% for giants, and are most sensitive to the quality of $log g$ measurements. The code was validated by comparing our distance estimates to parallax measurements from the Hipparcos mission for nearby stars (< 300 pc), to asteroseismic distances of CoRoT red giant stars, and to known distances of well-studied open and globular clusters. The external comparisons confirm that our distances are subject to very small systematic biases with respect to the fundamental Hipparcos scale (+0.4 % for dwarfs, and +1.6% for giants). The typical random distance scatter is 18% for dwarfs, and 26% for giants. For the CoRoT-APOGEE sample, the typical random distance scatter is ~15%, both for the nearby and farther data. Our distances are systematically larger than the CoRoT ones by about +9%, which can mostly be attributed to the different choice of priors. The comparison to known distances of star clusters from SEGUE and APOGEE has led to significant systematic differences for many cluster stars, but with opposite signs, and with substantial scatter. Finally, we tested our distances against those previously determined for a high-quality sample of giant stars from the RAVE survey, again finding a small systematic trend of +5% and an rms scatter of 30%.
Current and future Cosmic Microwave Background (CMB) Radiation experiments are targeting the polarized $B$-mode signal. The small amplitude of this signal makes a successful measurement challenging for current technologies. Therefore, very accurate s tudies to mitigate and control possible systematic effects are vital to achieve a successful observation. An additional challenge is coming from the presence of polarized Galactic foreground signals that contaminate the CMB signal. When they are combined, the foreground signals dominate the polarized CMB signal at almost every relevant frequency. Future experiments, like the LiteBIRD space-borne mission, aim at measuring the CMB $B$-mode signal with high accuracy to measure the tensor-to-scalar ratio $r$ at the $10^{-3}$ level. We present a method to study the photometric calibration requirement needed to minimize the leakage of polarized Galactic foreground signals into CMB polarization maps for a multi-frequency CMB experiment. We applied this method to the LiteBIRD case, and we found precision requirements for the photometric calibration in the range $sim10^{-4}-2.5times10^{-3}$ depending on the frequency band. Under the assumption that the detectors are uncorrelated, we found requirements per detector in the range $sim0.18times10^{-2}-2.0times10^{-2}$. Finally, we relate the calibration requirements to the band-pass resolution to define constraints for a few representative band-pass responses: $Delta usim0.2-2$ GHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا