ﻻ يوجد ملخص باللغة العربية
In many settings, an effective way of evaluating objects of interest is to collect evaluations from dispersed individuals and to aggregate these evaluations together. Some examples are categorizing online content and evaluating student assignments via peer grading. For this data science problem, one challenge is to motivate participants to conduct such evaluations carefully and to report them honestly, particularly when doing so is costly. Existing approaches, notably peer-prediction mechanisms, can incentivize truth telling in equilibrium. However, they also give rise to equilibria in which agents do not pay the costs required to evaluate accurately, and hence fail to elicit useful information. We show that this problem is unavoidable whenever agents are able to coordinate using low-cost signals about the items being evaluated (e.g., text labels or pictures). We then consider ways of circumventing this problem by comparing agents reports to ground truth, which is available in practice when there exist trusted evaluators---such as teaching assistants in the peer grading scenario---who can perform a limited number of unbiased (but noisy) evaluations. Of course, when such ground truth is available, a simpler approach is also possible: rewarding each agent based on agreement with ground truth with some probability, and unconditionally rewarding the agent otherwise. Surprisingly, we show that the simpler mechanism achieves stronger incentive guarantees given less access to ground truth than a large set of peer-prediction mechanisms.
We consider the problem of purchasing data for machine learning or statistical estimation. The data analyst has a budget to purchase datasets from multiple data providers. She does not have any test data that can be used to evaluate the collected dat
In the setting where we ask participants multiple similar possibly subjective multi-choice questions (e.g. Do you like Bulbasaur? Y/N; do you like Squirtle? Y/N), peer prediction aims to design mechanisms that encourage honest feedback without verifi
We propose measurement integrity, a property related to ex post reward fairness, as a novel desideratum for peer prediction mechanisms in many applications, including peer assessment. We operationalize this notion to evaluate the measurement integrit
Recent advances in multi-task peer prediction have greatly expanded our knowledge about the power of multi-task peer prediction mechanisms. Various mechanisms have been proposed in different settings to elicit different types of information. But we s
Crowdsourcing is a popular paradigm for soliciting forecasts on future events. As people may have different forecasts, how to aggregate solicited forecasts into a single accurate prediction remains to be an important challenge, especially when no his