ﻻ يوجد ملخص باللغة العربية
We show that one can construct a quantum absorption refrigerator that provides refrigeration only in the transient regime, by using three interacting qubits, each of which is also interacting with local heat-bath. The machine either does not provide cooling in the steady state, or the steady state is achieved after a long time. We propose a canonical form of qubit-bath interaction parameters that generates transient cooling without steady-state cooling, and claim that such a phenomenon is generic to small-scale quantum absorption refrigerators. We also show that it is generically possible to have fast cooling. We demonstrate our results for two separate models of thermalization, and show that a transient cooling without steady-state cooling is associated with generation of negligible, or no bipartite quantum correlations. For one of the models of thermalization, we find that the minimum achievable temperature of the refrigerated qubit can remain almost frozen, i.e., unchanged, for a significant region of the parameter space.
We consider fault-tolerant quantum computation in the context where there are no fresh ancilla qubits available during the computation, and where the noise is due to a general quantum channel. We show that there are three classes of noisy channels: I
We study a quantum absorption refrigerator, in which a target qubit is cooled by two machine qubits in a nonequilibrium steady state. It is realized by a strong internal coupling in the two-qubit fridge and a vanishing tripartite interaction among th
Thermodynamics is one of the oldest and well-established branches of physics that sets boundaries to what can possibly be achieved in macroscopic systems. While it started as a purely classical theory, it was realized in the early days of quantum mec
We study the phenomenon of absorption refrigeration, where refrigeration is achieved by heating instead of work, in two different setups: a minimal set up based on coupled qubits, and two non-linearly coupled resonators. Considering ZZ interaction be
We study the application of a counter-diabatic driving (CD) technique to enhance the thermodynamic efficiency and power of a quantum Otto refrigerator based on a superconducting qubit coupled to two resonant circuits. Although the CD technique is ori