ترغب بنشر مسار تعليمي؟ اضغط هنا

The Evolution of Active Galactic Nuclei in Clusters of Galaxies from the Dark Energy Survey

55   0   0.0 ( 0 )
 نشر من قبل Tesla E. Jeltema
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. In this paper, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 10^43 ergs s^-1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.1<z<0.95. Analysis of the present sample reveals that the AGN fraction in red-sequence cluster members has a strong positive correlation with redshift such that the AGN fraction increases by a factor of ~8 from low to high redshift, and the fraction of cluster galaxies hosting AGN at high redshifts is greater than the low-redshift fraction at 3.6 sigma. In particular, the AGN fraction increases steeply at the highest redshifts in our sample at z>0.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.



قيم البحث

اقرأ أيضاً

We aim to constrain the evolution of AGN as a function of obscuration using an X-ray selected sample of $sim2000$ AGN from a multi-tiered survey including the CDFS, AEGIS-XD, COSMOS and XMM-XXL fields. The spectra of individual X-ray sources are anal ysed using a Bayesian methodology with a physically realistic model to infer the posterior distribution of the hydrogen column density and intrinsic X-ray luminosity. We develop a novel non-parametric method which allows us to robustly infer the distribution of the AGN population in X-ray luminosity, redshift and obscuring column density, relying only on minimal smoothness assumptions. Our analysis properly incorporates uncertainties from low count spectra, photometric redshift measurements, association incompleteness and the limited sample size. We find that obscured AGN with $N_{H}>{rm 10^{22}, cm^{-2}}$ account for ${77}^{+4}_{-5}%$ of the number density and luminosity density of the accretion SMBH population with $L_{{rm X}}>10^{43}text{ erg/s}$, averaged over cosmic time. Compton-thick AGN account for approximately half the number and luminosity density of the obscured population, and ${38}^{+8}_{-7}%$ of the total. We also find evidence that the evolution is obscuration-dependent, with the strongest evolution around $N_{H}thickapprox10^{23}text{ cm}^{-2}$. We highlight this by measuring the obscured fraction in Compton-thin AGN, which increases towards $zsim3$, where it is $25%$ higher than the local value. In contrast the fraction of Compton-thick AGN is consistent with being constant at $approx35%$, independent of redshift and accretion luminosity. We discuss our findings in the context of existing models and conclude that the observed evolution is to first order a side-effect of anti-hierarchical growth.
Stars can either be formed in or captured by the accretion disks in Active Galactic Nuclei (AGN). These AGN stars are irradiated and subject to extreme levels of accretion, which can turn even low-mass stars into very massive ones ($M > 100 {rm M}_od ot$) whose evolution may result in the formation of massive compact objects ($M > 10 {rm M}_odot$). Here we explore the spins of these AGN stars and the remnants they leave behind. We find that AGN stars rapidly spin up via accretion, eventually reaching near-critical rotation rates. They further maintain near-critical rotation even as they shed their envelopes, become compact, and undergo late stages of burning. This makes them good candidates to produce high-spin massive black holes, such as the ones seen by LIGO-Virgo in GW190521g, as well as long Gamma Ray Bursts (GRBs) and the associated chemical pollution of the AGN disk.
Supermassive black holes (SMBHs) have been found to be ubiquitous in the nuclei of early-type galaxies and of bulges of spirals. There are evidences of a tight correlation between the SMBH masses, the velocity dispersions of stars in the spheroidal c omponents galaxies and other galaxy properties. Also the evolution of the luminosity density due to nuclear activity is similar to that due to star formation. All that suggests an evolutionary connection between Active Galactic Nuclei (AGNs) and their host galaxies. After a review of these evidences this lecture discusses how AGNs can affect the host galaxies. Other feedback processes advocated to account for the differences between the halo and the stellar mass functions are also briefly introduced.
This Astro2020 white paper summarizes the unknowns of active galactic nuclei (AGN) physics that could be unveiled thanks to a new, space-born, ultraviolet spectropolarimeter. The unique capabilities of high energy polarimetry would help us to underst and the precise mechanisms of matter and energy transfer and supermassive black holes growth, together with the impact of AGN feedback on galaxy evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا