ﻻ يوجد ملخص باللغة العربية
The angular distribution and linear polarization of the fluorescence light following the resonant photoexcitation is investigated within the framework of the density matrix and second-order perturbation theory. Emphasis has been placed on signatures for determining the level sequence and splitting of intermediate (partially) overlapping resonances, if analyzed as a function of the photon energy of the incident light. Detailed computations within the multiconfiguration Dirac-Fock method have been performed especially for the $1s^{2}2s^{2}2p^{6}3s;, J_{i}=1/2 ,+, gamma_{1} :rightarrow: (1s^{2}2s2p^{6}3s)_{1}3p_{3/2};, J=1/2, , 3/2 :rightarrow: 1s^{2}2s^{2}2p^{6}3s;, J_{f}=1/2 ,+, gamma_{2}$ photoexcitation and subsequent fluorescence emission of atomic sodium. A remarkably strong dependence of the angular distribution and linear polarization of the $gamma_{2}$ fluorescence emission is found upon the level sequence and splitting of the intermediate $(1s^{2}2s2p^{6}3s)_{1}3p_{3/2};, J=1/2, , 3/2$ overlapping resonances owing to their finite lifetime (linewidth). We therefore suggest that accurate measurements of the angular distribution and linear polarization might help identify the sequence and small splittings of closely-spaced energy levels, even if they can not be spectroscopically resolved.
In this paper, we present experimental techniques to resolve the closely spaced hyperfine levels of a weak transition by eliminating the residual/partial two-photon Doppler broadening and cross-over resonances in a wavelength mismatched double resona
In this review article we provide an overview of the field of atomic structure of light atoms in strong magnetic fields. There is a very rich history of this field which dates back to the very birth of quantum mechanics. At various points in the past
Anisotropic plasmon coupling in closely-spaced chains of Ag nanoparticles was visualized using the electron energy loss spectroscopy in a scanning transmission electron microscope. For dimers as the simplest chain, mapping the plasmon excitations wit
A quantum-mechanical formulation of energy transfer between closely-spaced surfaces is given. Coupling between the two surfaces arises from the atomic dipole-dipole interaction involving transverse-photon exchange. The exchange of photons at resonanc
Electromagnetically induced transparency (EIT) is a well-known phenomenon due in part to its applicability to quantum devices such as quantum memories and quantum gates. EIT is commonly modeled with a three-level lambda system due to the simplicity o