ﻻ يوجد ملخص باللغة العربية
In this paper,we consider a macro approximation of the flow of a risk reserve, The process is observed at discrete time points. Because we cannot directly observe each jump time and size then we will make use of a technique for identifying the times when jumps larger than a suitably defined threshold occurred. We estimate the jump size and survival probability of our risk process from discrete observations.
We consider the problem of estimating the predictive density of future observations from a non-parametric regression model. The density estimators are evaluated under Kullback--Leibler divergence and our focus is on establishing the exact asymptotics
We consider the problem of statistical inference for the effective dynamics of multiscale diffusion processes with (at least) two widely separated characteristic time scales. More precisely, we seek to determine parameters in the effective equation d
We discuss parametric estimation of a degenerate diffusion system from time-discrete observations. The first component of the degenerate diffusion system has a parameter $theta_1$ in a non-degenerate diffusion coefficient and a parameter $theta_2$ in
In this paper we consider an ergodic diffusion process with jumps whose drift coefficient depends on an unknown parameter $theta$. We suppose that the process is discretely observed at the instants (t n i)i=0,...,n with $Delta$n = sup i=0,...,n--1 (t
In this paper, we prove almost surely consistency of a Survival Analysis model, which puts a Gaussian process, mapped to the unit interval, as a prior on the so-called hazard function. We assume our data is given by survival lifetimes $T$ belonging t