ﻻ يوجد ملخص باللغة العربية
We investigate the adsorption of a single tetracyanoethylene (TCNE) molecule on the silver (001) surface. Adsorption structures, electronic properties, and scanning tunneling microscopy (STM) images are calculated within density-functional theory. Adsorption occurs most favorably in on-top configuration, with the C=C double bond directly above a silver atom and the four N atoms bound to four neighboring Ag atoms. The lowest unoccupied molecular orbital of TCNE becomes occupied due to electron transfer from the substrate. This state dominates the electronic spectrum and the STM image at moderately negative bias. We discuss and employ a spatial extrapolation technique for the calculation of STM and scanning tunneling spectroscopy (STS) images. Our calculated images are in good agreement with experimental data.
First-principles calculations using density functional theory based on norm-conserving pseudopotentials have been performed to investigate the Cs adsorption on the Si(001) surface for 0.5 and 1 ML coverages. We found that the saturation coverage corr
We report on a first principles study of anti-ferromagnetic resonance (AFMR) phenomena in metallic systems [MnX (X=Ir,Pt,Pd,Rh) and FeRh] under an external electric field. We demonstrate that the AFMR linewidth can be separated into a relativistic co
We combine ab initio density functional theory with transport calculations to provide a microscopic basis for distinguishing between good and poor metal contacts to nanotubes. Comparing Ti and Pd as examples of different contact metals, we trace back
We present a general computational scheme based on molecular dynamics (m.d.) simulation for calculating the chemical potential of adsorbed molecules in thermal equilibrium on the surface of a material. The scheme is based on the calculation of the me
The electronic and structural properties of (i) boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by {it ab initio} total energy calculations.