ﻻ يوجد ملخص باللغة العربية
While gradient descent has proven highly successful in learning connection weights for neural networks, the actual structure of these networks is usually determined by hand, or by other optimization algorithms. Here we describe a simple method to make network structure differentiable, and therefore accessible to gradient descent. We test this method on recurrent neural networks applied to simple sequence prediction problems. Starting with initial networks containing only one node, the method automatically builds networks that successfully solve the tasks. The number of nodes in the final network correlates with task difficulty. The method can dynamically increase network size in response to an abrupt complexification in the task; however, reduction in network size in response to task simplification is not evident for reasonable meta-parameters. The method does not penalize network performance for these test tasks: variable-size networks actually reach better performance than fixed-size networks of higher, lower or identical size. We conclude by discussing how this method could be applied to more complex networks, such as feedforward layered networks, or multiple-area networks of arbitrary shape.
The impressive lifelong learning in animal brains is primarily enabled by plastic changes in synaptic connectivity. Importantly, these changes are not passive, but are actively controlled by neuromodulation, which is itself under the control of the b
The adaptive changes in synaptic efficacy that occur between spiking neurons have been demonstrated to play a critical role in learning for biological neural networks. Despite this source of inspiration, many learning focused applications using Spiki
In this work we introduce a differentiable version of the Compositional Pattern Producing Network, called the DPPN. Unlike a standard CPPN, the topology of a DPPN is evolved but the weights are learned. A Lamarckian algorithm, that combines evolution
We introduce a method to train Quantized Neural Networks (QNNs) --- neural networks with extremely low precision (e.g., 1-bit) weights and activations, at run-time. At train-time the quantized weights and activations are used for computing the parame
Differentiable simulators provide an avenue for closing the sim-to-real gap by enabling the use of efficient, gradient-based optimization algorithms to find the simulation parameters that best fit the observed sensor readings. Nonetheless, these anal