ﻻ يوجد ملخص باللغة العربية
In this Chapter, we present some interesting properties of quantum walks on the line. We concentrate our attention in the emergence of invariance and provide some insights into the ultimate origin of the observed behavior. In the first part of the Chapter, we review the building blocks of the quantum-mechanical version of the standard random walk in one dimension. The most distinctive difference between random and quantum walks is the replacement of the random coin in the former by the action of a unitary operator upon some internal property of the later. We provide explicit expressions for the solution to the problem when the most general form for the homogeneous unitary operator is considered, and we analyze several key features of the system as the presence of symmetries or stationary limits. After that, we analyze the consequences of letting the properties of the coin operator change from site to site, and from time step to time step. In spite of this lack of homogeneity, the probabilistic properties of the motion of the walker can remain unaltered if the coin variability is chosen adequately. Finally, we show how this invariance can be connected to the gauge freedom of electromagnetism.
In this paper we unveil some features of a discrete-time quantum walk on the line whose coin depends on the temporal variable. After considering the most general form of the unitary coin operator, we focus on the role played by the two phase factors
A discrete-time quantum walk on a graph is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. Hitting times for discrete quantum walks on graphs give an average time before the walk reaches an endi
Given its importance to many other areas of physics, from condensed matter physics to thermodynamics, time-reversal symmetry has had relatively little influence on quantum information science. Here we develop a network-based picture of time-reversal
Describing a particle in an external electromagnetic field is a basic task of quantum mechanics. The standard scheme for this is known as minimal coupling, and consists of replacing the momentum operators in the Hamiltonian by modified ones with an a
Aromaticity is a well-known phenomenon in both physics and chemistry, and is responsible for many unique chemical and physical properties of aromatic molecules. The primary feature contributing to the stability of polycyclic aromatic hydrocarbons is