ﻻ يوجد ملخص باللغة العربية
To date, the intrinsic thermal conductivity tensor of bulk black phosphorus (BP), an important 2D material, is still unknown, since recent studies focus on BP flakes not on bulk BP. Here we report the anisotropic thermal conductivity tensor of bulk BP, for temperature range 80 - 300 K. Our measurements are similar to prior measurements on submicron BP flakes along zigzag and armchair axes, but are >25% higher in the through-plane axis, suggesting that phonon mean-free-paths are substantially longer in the through-plane direction. We find that despite the anisotropy in thermal conductivity, phonons are predominantly scattered by the same Umklapp processes in all directions. We also find that the phonon relaxation time is rather isotropic in the basal planes, but is highly anisotropic in the through-plane direction. Our work advances fundamental knowledge of anisotropic scattering of phonons in BP and is an important benchmark for future studies on thermal properties of BP nanostructures.
Black phosphorus (BP) has emerged as a direct-bandgap semiconducting material with great application potentials in electronics, photonics, and energy conversion. Experimental characterization of the anisotropic thermal properties of BP, however, is e
Black phosphorus (BP) has emerged as a promising candidate for next generation electronics and optoelectronics among the 2D family materials due to its extraordinary electrical/optical/optoelectronic properties. Interestingly, BP shows strong anisotr
Black phosphorus has recently attracted significant attention for its highly anisotropic properties. A variety of ultrafast optical spectroscopies has been applied to probe the carrier response to photoexcitation, but the complementary lattice respon
We theoretically compute the thermal conductivity of SiGe alloy nanowires as a function of nanowire diameter, alloy concentration, and temperature, obtaining a satisfactory quantitative agreement with experimental results. Our results account for the
We study theoretically the structural and electronic response of layered bulk black phosphorus to in-layer strain. Ab initio density functional theory (DFT) calculations reveal that the strain energy and interlayer spacing display a strong anisotropy