ترغب بنشر مسار تعليمي؟ اضغط هنا

Activity-assisted self-assembly of colloidal particles

68   0   0.0 ( 0 )
 نشر من قبل Stewart Mallory
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We outline a basic strategy of how self-propulsion can be used to improve the yield of a typical colloidal self-assembly process. The success of this approach is predicated on the thoughtful design of the colloidal building block as well as how self-propulsion is endowed to the particle. As long as a set of criteria are satisfied, it is possible to significantly increase the rate of self-assembly, and greatly expand the window in parameter space where self-assembly can occur. In addition, we show that by tuning the relative on/off time of the self-propelling force it is possible to modulate the effective speed of the colloids allowing for further optimization of the self-assembly process.



قيم البحث

اقرأ أيضاً

From dumbbells to FCC crystals, we study the self-assembly pathway of amphiphatic, spherical colloidal particles as a function of the size of the hydrophobic region using molecular dynamics simulations. Specifically, we analyze how local inter-partic le interactions correlate to the final self-assembled aggregate and how they affect the dynamical pathway of structure formation. We present a detailed diagram separating the many phases that we find for different sizes of the hydrophobic area, and uncover a narrow region where particles self-assemble into hollow, faceted cages that could potentially find interesting engineering applications.
We investigate the structure of a dilute mixture of amphiphilic dimers and spherical particles, a model relevant to the problem of encapsulating globular guest molecules in a dispersion. Dimers and spheres are taken to be hard particles, with an addi tional attraction between spheres and the smaller monomers in a dimer. Using Monte Carlo simulation, we document the low-temperature formation of aggregates of guests (clusters) held together by dimers, whose typical size and shape depend on the guest concentration $chi$. For low $chi$ (less than $10%$), most guests are isolated and coated with a layer of dimers. As $chi$ progressively increases, clusters grow in size becoming more and more elongated and polydisperse; after reaching a shallow maximum for $chiapprox 50%$, the size of clusters again reduces upon increasing $chi$ further. In one case only ($chi=50%$ and moderately low temperature) the mixture relaxed to a fluid of lamellae, suggesting that in this case clusters are metastable with respect to crystal-vapor separation. On heating, clusters shrink until eventually the system becomes homogeneous on all scales. On the other hand, as the mixture is made denser and denser at low temperature, clusters get increasingly larger until a percolating network is formed.
In this review we discuss recent advances in the self-assembly of self-propelled colloidal particles and highlight some of the most exciting results in this field with a specific focus on dry active matter. We explore this phenomenology through the l ens of the complexity of the colloidal building blocks. We begin by considering the behavior of isotropic spherical particles. We then discuss the case of amphiphilic and dipolar Janus particles. Finally, we show how the geometry of the colloids and/or the directionality of their interactions can be used to control the physical properties of the assembled active aggregates, and suggest possible strategies on how to exploit activity as a tunable driving force for self-assembly. The unique properties of active colloids lend promise for the design of the next generation of functional, environment-sensing microstructures able to perform specific tasks in an autonomous and targeted manner.
We investigate the phase behavior and kinetics of a monodisperse mixture of active (textit{i.e.}, self-propelled) and passive isometric Brownian particles through Brownian dynamics simulations and theory. As in a purely active system, motility of the active component triggers phase separation into a dense and a dilute phase; in the dense phase we further find active-passive segregation, with rafts of passive particles in a sea of active particles. We find that phase separation from an initially disordered mixture can occur with as little as 15 percent of the particles being active. Finally, we show that a system prepared in a suitable fully segregated initial state reproducibly self-assembles an active corona which triggers crystallization of the passive core by initiating a compression wave. Our findings are relevant to the experimental pursuit of directed self-assembly using active particles.
In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of t he active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا