ترغب بنشر مسار تعليمي؟ اضغط هنا

Disordered Field Theory in $d=0$ and Distributional Zeta-Function

61   0   0.0 ( 0 )
 نشر من قبل Nami Fux Svaiter
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently we introduced a new technique for computing the average free energy of a system with quenched randomness. The basic tool of this technique is a distributional zeta-function. The distributional zeta-function is a complex function whose derivative at the origin yields the average free energy of the system as the sum of two contributions: the first one is a series in which all the integer moments of the partition function of the model contribute; the second one, which can not be written as a series of the integer moments, can be made as small as desired. In this paper we present a mathematical rigorous proof that the average free energy of one disordered $lambdavarphi^{4}$ model defined in a zero-dimensional space can be obtained using the distributional zeta-function technique. We obtain an analytic expression for the average free energy of the model.



قيم البحث

اقرأ أيضاً

In this paper we present a new mathematical rigorous technique for computing the average free energy of a disordered system with quenched randomness, using the replicas. The basic tool of this technique is a distributional zeta-function, a complex fu nction whose derivative at the origin yields the average free energy of the system as the sum of two contributions: the first one is a series in which all the integer moments of the partition function of the model contribute; the second one, which can not be written as a series of the integer moments, can be made as small as desired. This result supports the use of integer moments of the partition function, computed via replicas, for expressing the average free energy of the system. One advantage of the proposed formalism is that it does not require the understanding of the properties of the permutation group when the number of replicas goes to zero. Moreover, the symmetry is broken using the saddle-point equations of the model. As an application for the distributional zeta-function technique, we obtain the average free energy of the disordered $lambdavarphi^{4}$ model defined in a $d$-dimensional Euclidean space.
We propose a field-theoretic interpretation of Ruelle zeta function, and show how it can be seen as the partition function for $BF$ theory when an unusual gauge fixing condition on contact manifolds is imposed. This suggests an alternative rephrasing of a conjecture due to Fried on the equivalence between Ruelle zeta function and analytic torsion, in terms of homotopies of Lagrangian submanifolds.
139 - Jerome Dubail 2010
A good understanding of conformal field theory (CFT) at c=0 is vital to the physics of disordered systems, as well as geometrical problems such as polymers and percolation. Steady progress has shown that these CFTs should be logarithmic, with indecom posable operator product expansions, and indecomposable representations of the Virasoro algebra. In one of the earliest papers on the subject, V. Gurarie introduced a single parameter b to quantify this indecomposability in terms of the logarithmic partner t of the stress energy tensor T. He and A. Ludwig conjectured further that b=-5/8 for polymers and b=5/6 for percolation. While a lot of physics may be hidden behind this parameter - which has also given rise to a lot of discussions - it had remained very elusive up to now, due to the lack of available methods to measure it experimentally or numerically, in contrast say with the central charge. We show in this paper how to overcome the many difficulties in trying to measure b. This requires control of a lattice scalar product, lattice Jordan cells, together with a precise construction of the state L_{-2}|0>. The final result is that b=5/6 for polymers. For percolation, we find that b=-5/8 within an XXZ or supersymmetric representation. In the geometrical representation, we do not find a Jordan cell for L_0 at level two (finite-size Hamiltonian and transfer matrices are fully diagonalizable), so there is no b in this case.
The Riemann hypothesis states that all nontrivial zeros of the zeta function lie in the critical line $Re(s)=1/2$. Hilbert and Polya suggested that one possible way to prove the Riemann hypothesis is to interpret the nontrivial zeros in the light of spectral theory. Following this approach, we discuss a necessary condition that such a sequence of numbers should obey in order to be associated with the spectrum of a linear differential operator of a system with countably infinite number of degrees of freedom described by quantum field theory. The sequence of nontrivial zeros is zeta regularizable. Then, functional integrals associated with hypothetical systems described by self-adjoint operators whose spectra is given by this sequence can be constructed. However, if one considers the same situation with primes numbers, the associated functional integral cannot be constructed, due to the fact that the sequence of prime numbers is not zeta regularizable. Finally, we extend this result to sequences whose asymptotic distributions are not far away from the asymptotic distribution of prime numbers.
We introduce a polynomial zeta function $zeta^{(p)}_{P_n}$, related to certain problems of mathematical physics, and compute its value and the value of its first derivative at the origin $s=0$, by means of a very simple technique. As an application, we compute the determinant of the Dirac operator on quaternionic vector spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا