ﻻ يوجد ملخص باللغة العربية
Discrepancies between the measured and simulated gain in Thick Micropatterned gaseous detectors (MPGD), namely THGEM, have been observed by several groups. In order to simulate the electron avalanches and the gain the community relies on the calculations performed in Garfield++, known to produce differences of 2 orders of magnitude in comparison to the experimental data for thick MPGDs. In this work, simulations performed for Ne/5%CH4, Ar/5%CH4 and Ar/30%CO2 mixtures shows that Garfield++ is able to perfectly describe the experimental data if Penning effect is included in the simulation. The comparison between the number of excitations which may lead to a Penning transfer, is shown for THGEM and GEM, explaining the less pronounced gain discrepancies observed in GEM.
Charging-up processes affecting gain stability in Thick Gas Electron Multipliers (THGEM) were studied with a dedicated simulation toolkit. Integrated with Garfield++, it provides an effective platform for systematic phenomenological studies of chargi
We report a precise TCAD simulation for low gain avalanche detector (LGAD) with calibration by secondary ion mass spectroscopy (SIMS). The radiation model - LGAD Radiation Damage Model (LRDM) combines local acceptor degeneration with global deep ener
The operation of Thick Gaseous Electron Multipliers (THGEM) in Ne and Ne/CH4 mixtures, features high multiplication factors at relatively low operation potentials, in both single- and double-THGEM configurations. We present some systematic data measu
A software package for modeling segmented High-Purity Segmented Germanium detectors, AGATAGeFEM, is presented. The choices made for geometry implementation and the calculations of the electric and weighting fields are discussed. Models used for charg
We briefly review the concept and properties of the Thick GEM (THGEM); it is a robust, high-gain gaseous electron multiplier, manufactured economically by standard printed-circuit drilling and etching technology. Its operation and structure resemble