ترغب بنشر مسار تعليمي؟ اضغط هنا

HAT-P-47b AND HAT-P-48b: Two Low Density Sub-Saturn-Mass Transiting Planets on the Edge of the Period--Mass Desert

84   0   0.0 ( 0 )
 نشر من قبل Gaspar A. Bakos
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. A. Bakos




اسأل ChatGPT حول البحث

We report the discovery of two new transiting extrasolar planets orbiting moderately bright (V = 10.7 and 12.2 mag) F stars (masses of 1.39 Msun and 1.10 Msun, respectively). The planets have periods of P = 4.7322 d and 4.4087 d, and masses of 0.21 MJ and 0.17 MJ which are almost half-way between those of Neptune and Saturn. With radii of 1.31 RJ and 1.13 RJ, these very low density planets are the two lowest mass planets with radii in excess that of Jupiter. Comparing with other recent planet discoveries, we find that sub-Saturns (0.18MJ < Mp < 0.3MJ) and super-Neptunes (0.05MJ < Mp < 0.18MJ) exhibit a wide range of radii, and their radii exhibit a weaker correlation with irradiation than higher mass planets. The two planets are both suitable for measuring the Rossiter-McLaughlin effect and for atmospheric characterization. Measuring the former effect would allow an interesting test of the theory that star-planet tidal interactions are responsible for the tendency of close-in giant planets around convective envelope stars to be on low obliquity orbits. Both planets fall on the edge of the short period Neptunian desert in the semi-major axis-mass plane.



قيم البحث

اقرأ أيضاً

We present the discovery of two transiting exoplanets. HAT-P-28b orbits a V=13.03 G3 dwarf star with a period P = 3.2572 d and has a mass of 0.63 +- 0.04 MJ and a radius of 1.21 + 0.11 -0.08 RJ yielding a mean density of 0.44 +- 0.09 g cm-3. HAT-P-29 b orbits a V=11.90 F8 dwarf star with a period P = 5.7232 d and has a mass of 0.78 +0.08 -0.04 MJ and a radius of 1.11 +0.14 -0.08 RJ yielding a mean density of 0.71 +- 0.18 g cm-3. We discuss the properties of these planets in the context of other known transiting planets.
168 - J. D. Hartman 2009
We report on the discovery of HAT-P-12b, a transiting extrasolar planet orbiting the moderately bright V=12.8 K4 dwarf GSC 03033-00706, with a period P = 3.2130598 +- 0.0000021 d, transit epoch Tc = 2454419.19556 +- 0.00020 (BJD) and transit duration 0.0974 +- 0.0006 d. The host star has a mass of 0.73 +- 0.02 Msun, radius of 0.70 +- ^0.02_0.01 Rsun, effective temperature 4650 +- 60 K and metallicity [Fe/H] = -0.29 +- 0.05. We find a slight correlation between the observed spectral line bisector spans and the radial velocity, so we consider, and rule out, various blend configurations including a blend with a background eclipsing binary, and hierarchical triple systems where the eclipsing body is a star or a planet. We conclude that a model consisting of a single star with a transiting planet best fits the observations, and show that a likely explanation for the apparent correlation is contamination from scattered moonlight. Based on this model, the planetary companion has a mass of 0.211 +- 0.012 MJup, and a radius of 0.959 +- ^0.029_0.021 RJup yielding a mean density of 0.295 +- 0.025 g cm^-3. Comparing these observations with recent theoretical models we find that HAT-P-12b is consistent with a ~ 1-4.5 Gyr, mildly irradiated, H/He dominated planet with a core mass Mc <~ 10 Mearth. HAT-P-12b is thus the least massive H/He dominated gas giant planet found to date. This record was previously held by Saturn.
291 - Joel D. Hartman 2015
We report the discovery and characterization of four transiting exoplanets by the HATNet survey. The planet HAT-P-50b has a mass of 1.35 M_J and a radius of 1.29 R_J, and orbits a bright (V = 11.8 mag) M = 1.27 M_sun, R = 1.70 R_sun star every P = 3. 1220 days. The planet HAT-P-51b has a mass of 0.31 M_J and a radius of 1.29 R_J, and orbits a V = 13.4 mag, M = 0.98 M_sun, R = 1.04 R_sun star with a period of P = 4.2180 days. The planet HAT-P-52b has a mass of 0.82 M_J and a radius of 1.01 R_J, and orbits a V = 14.1 mag, M = 0.89 M_sun, R = 0.89 R_sun star with a period of P = 2.7536 days. The planet HAT-P-53b has a mass of 1.48 M_J and a radius of 1.32 R_J, and orbits a V = 13.7 mag, M = 1.09 M_sun, R = 1.21 R_sun star with a period of P = 1.9616 days. All four planets are consistent with having circular orbits and have masses and radii measured to better than 10% precision. The low stellar jitter and favorable R_P/R_star ratio for HAT-P-51 make it a promising target for measuring the Rossiter-McLaughlin effect for a Saturn-mass planet.
216 - G. A. Bakos 2010
We report the discovery of four relatively massive (2-7MJ) transiting extrasolar planets. HAT-P-20b orbits a V=11.339 K3 dwarf star with a period P=2.875317+/-0.000004d. The host star has a mass of 0.760+/-0.03 Msun, radius of 0.690+/-0.02 Rsun, Teff =4595+/-80 K, and metallicity [Fe/H]=+0.35+/-0.08. HAT-P-20b has a mass of 7.246+/-0.187 MJ, and radius of 0.867+/-0.033 RJ yielding a mean density of 13.78+/-1.50 gcm^-3 , which is the second highest value among all known exoplanets. HAT-P-21b orbits a V=11.685 G3 dwarf on an eccentric (e=0.2280+/-0.016) orbit, with a period of P=4.1244810+/-000007d. The host star has a mass of 0.95+/-0.04Msun, radius of 1.10+/-0.08Rsun, Teff=5588+/-80K, and [Fe/H]=+0.01+/-0.08. HAT-P-21b has a mass of 4.063+/-0.161MJ, and radius of 1.024+/-0.092RJ. HAT-P-22b orbits the V=9.732 G5 dwarf HD233731, with P=3.2122200+/-0.000009d. The host star has a mass of 0.92+/-0.03Msun, radius of 1.04+/-0.04Rsun, Teff=5302+/-80K, and metallicity of +0.24+/-0.08. The planet has a mass of 2.147+/-0.061 MJ, and compact radius of 1.080+/-0.058RJ. The host star also harbors an M-dwarf companion at a wide separation. Finally, HAT-P-23b orbits a V=12.432 G0 dwarf star, with a period P=1.212884+/-0.000002d. The host star has a mass of 1.13+/-0.04sun, radius of 1.20+/-0.07Rsun, Teff=5905+/-80K, and [Fe/H]=+0.15+/-0.04. The planetary companion has a mass of 2.090+/-0.111MJ, and radius of 1.368+/-0.090RJ (abridged).
We report the discovery and characterization of 7 transiting exoplanets from the HATNet survey. The planets, which are hot Jupiters and Saturns transiting bright sun-like stars, include: HAT-P-58b (with mass Mp = 0.37 MJ, radius Rp = 1.33 RJ, and orb ital period P = 4.0138 days), HAT-P-59b (Mp = 1.54 MJ, Rp = 1.12 RJ, P = 4.1420 days), HAT-P-60b (Mp = 0.57 MJ, Rp = 1.63 RJ, P = 4.7948 days), HAT-P-61b (Mp = 1.06 MJ, Rp = 0.90 RJ, P = 1.9023 days), HAT-P-62b (Mp = 0.76 MJ, Rp = 1.07 RJ, P = 2.6453 days), HAT-P-63b (Mp = 0.61 MJ, Rp = 1.12 RJ, P = 3.3777 days), and HAT-P-64b (Mp = 0.58 MJ, Rp = 1.70 RJ, P = 4.0072 days). The typical errors on these quantities are 0.06 MJ, 0.03 RJ, and 0.2seconds, respectively. We also provide accurate stellar parameters for each of the hosts stars. With V = 9.710+/-0.050mag, HAT-P-60 is an especially bright transiting planet host, and an excellent target for additional follow-up observations. With Rp = 1.703+/-0.070 RJ, HAT-P-64b is a highly inflated hot Jupiter around a star nearing the end of its main-sequence lifetime, and is among the largest known planets. Five of the seven systems have long-cadence observations by TESS which are included in the analysis. Of particular note is HAT-P-59 (TOI-1826.01) which is within the Northern continuous viewing zone of the TESS mission, and HAT-P-60, which is the TESS candidate TOI-1580.01.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا