ترغب بنشر مسار تعليمي؟ اضغط هنا

Exclusive $omega$ meson muoproduction on transversely polarised protons

110   0   0.0 ( 0 )
 نشر من قبل Oleg Denisov
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Exclusive production of $omega$ mesons was studied at the COMPASS experiment by scattering $160~mathrm{GeV}/mathit{c}$ muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured in the range of photon virtuality $1~(mathrm{GeV}/mathit{c})^2 < Q^2 < 10~(mathrm{GeV}/mathit{c})^2$, Bjorken scaling variable $0.003 < x_{mathit{Bj}} < 0.3$ and transverse momentum squared of the $omega$ meson $0.05~(mathrm{GeV}/mathit{c})^2 < p_{T}^{2} < 0.5~(mathrm{GeV}/mathit{c})^2$. The measured asymmetries are sensitive to the nucleon helicity-flip Generalised Parton Distributions (GPD) $E$ that are related to the orbital angular momentum of quarks, the chiral-odd GPDs $H_{T}$ that are related to the transversity Parton Distribution Functions, and the sign of the $piomega$ transition form factor. The results are compared to recent calculations of a GPD-based model.



قيم البحث

اقرأ أيضاً

The transverse target spin azimuthal asymmetry A_UT in hard exclusive production of rho^0 mesons was measured at COMPASS by scattering 160 GeV/c muons off transversely polarised protons and deuterons. The measured asymmetry is sensitive to the nucleo n helicity-flip generalised parton distributions E^q, which are related to the orbital angular momentum of quarks in the nucleon. The Q^2, x_B and p_t^2 dependence of A_UT is presented in a wide kinematic range. Results for deuterons are obtained for the first time. The measured asymmetry is small in the whole kinematic range for both protons and deuterons, which is consistent with the theoretical interpretation that contributions from GPDs E^u and E^d approximately cancel.
We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive $omega$ meson muoproduction on the proton at COMPASS using 160 GeV/$c$ polarised $ mu ^{+}$ and $ mu ^{-}$ beams impinging on a liquid hydrogen target. The measureme nt covers the range 5.0 GeV/$c^2$ $< W <$ 17.0 GeV/$c^2$, with the average kinematics $langle Q^{2} rangle=$ 2.1 (GeV/$c$)$^2$, $langle W rangle= 7.6$ GeV/$c^2$, and $langle p^{2}_{rm T} rangle = 0.16$ (GeV/$c$)$^2$. Here, $Q^2$ denotes the virtuality of the exchanged photon, $W$ the mass of the final hadronic system and $p_T$ the transverse momentum of the $omega$ meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($gamma^*_T to V_L$) indicate a violation of $s$-channel helicity conservation. Additionally, we observe a sizeable contribution of unnatural-parity-exchange (UPE) transitions that decreases with increasing $W$. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow to evaluate in a model-dependent way the contribution of UPE transitions and assess the role of parton helicity-flip GPDs in exclusive $omega$ production.
Exclusive production of $rho^0$ mesons was studied at the COMPASS experiment by scattering 160 GeV/$c$ muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured as a function of $Q^2$, $x_{Bj }$, or $p_{T}^{2}$. The $sin phi_S$ asymmetry is found to be $-0.019 pm 0.008(stat.) pm 0.003(syst.)$. All other asymmetries are also found to be of small magnitude and consistent with zero within experimental uncertainties. Very recent calculations using a GPD-based model agree well with the present results. The data is interpreted as evidence for the existence of chiral-odd, transverse generalized parton distributions.
Exclusive $rho^0$-meson electroproduction is studied by the HERMES experiment, using the 27.6 GeV longitudinally polarized electron/positron beam of HERA and a transversely polarized hydrogen target, in the kinematic region 1.0 GeV$^2$<Q$^2$<7.0 GeV$ ^2$, 3.0 GeV<W<6.3 GeV, and -t<0.4 GeV$^2$. Using an unbinned maximum-likelihood method, 25 parameters are extracted. These determine the real and imaginary parts of the ratios of several helicity amplitudes describing $rho^0$-meson production by a virtual photon. The denominator of those ratios is the dominant amplitude, the nucleon-helicity-non-flip amplitude $F_{0frac{1}{2}0frac{1}{2}}$, which describes the production of a longitudinal $rho^{0}$-meson by a longitudinal virtual photon. The ratios of nucleon-helicity-non-flip amplitudes are found to be in good agreement with those from the previous HERMES analysis. The transverse target polarization allows for the first time the extraction of ratios of a number of nucleon-helicity-flip amplitudes to $F_{0frac{1}{2}0frac{1}{2}}$. Results obtained in a handbag approach based on generalized parton distributions taking into account the contribution from pion exchange are found to be in good agreement with these ratios. Within the model, the data favor a positive sign for the $pi-rho$ transition form factor. By also exploiting the longitudinal beam polarization, a total of 71 $rho^0$ spin-density matrix elements is determined from the extracted 25 parameters, in contrast to only 53 elements as directly determined in earlier analyses.
Hard exclusive electroproduction of $omega$ mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modula tions of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive $piomega$ transition form factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا