ﻻ يوجد ملخص باللغة العربية
Let $H_{mathrm{WR}}$ be the path on $3$ vertices with a loop at each vertex. D. Galvin conjectured, and E. Cohen, W. Perkins and P. Tetali proved that for any $d$-regular simple graph $G$ on $n$ vertices we have $$hom(G,H_{mathrm{WR}})leq hom(K_{d+1},H_{mathrm{WR}})^{n/(d+1)}.$$ In this paper we give a short proof of this theorem together with the proof of a conjecture of Cohen, Perkins and Tetali. Our main tool is a simple bijection between the Widom-Rowlinson model and the hard-core model on another graph. We also give a large class of graphs $H$ for which we have $$hom(G,H)leq hom(K_{d+1},H)^{n/(d+1)}.$$ In particular, we show that the above inequality holds if $H$ is a path or a cycle of even length at least $6$ with loops at every vertex.
In 1990, Cvetkovi{c} and Rowlinson [The largest eigenvalue of a graph: a survey, Linear Multilinear Algebra 28(1-2) (1990), 3--33] conjectured that among all outerplanar graphs on $n$ vertices, $K_1vee P_{n-1}$ attains the maximum spectral radius. In
In the hard-core model on a finite graph we are given a parameter lambda>0, and an independent set I arises with probability proportional to lambda^|I|. On infinite graphs a Gibbs distribution is defined as a suitable limit with the correct condition
The critical behavior of the Widom-Rowlinson mixture [J. Chem. Phys. 52, 1670 (1970)] is studied in d=3 dimensions by means of grand canonical Monte Carlo simulations. The finite size scaling approach of Kim, Fisher, and Luijten [Phys. Rev. Lett. 91,
The Widom-Rowlinson model of a fluid mixture is studied using a new cluster algorithm that is a generalization of the invaded cluster algorithm previously applied to Potts models. Our estimate of the critical exponents for the two-component fluid are
The $g$-girth-thickness $theta(g,G)$ of a graph $G$ is the minimum number of planar subgraphs of girth at least $g$ whose union is $G$. In this paper, we determine the $6$-girth-thickness $theta(6,K_n)$ of the complete graph $K_n$ in almost all cases