ﻻ يوجد ملخص باللغة العربية
We report on variable helium absorption lines in NGC 4151 observed across six epochs of quasi-simultaneous near-infrared and optical data. These observations cover the transitions from the metastable 2^3S state at 3889 A and 10830 A, and from the 2^1S state at 20587 A. This is the first AGN absorption line variability study to include measurements of the 20587 A line. The physical properties of the absorber recorded at the fifth observational epoch are relatively well constrained by the presence of absorption in both the optical and near-infrared components, with the 10830 A line likely saturated. The observations suggest variations in this absorbers strength are best explained by ionization changes in response to a variable incident continuum. Photoionization simulations constrain the total hydrogen number density of the epoch 5 absorber to 7.1<log(n_H/cm^-3)<8.8, the hydrogen column density to 21.2<log(N_H/cm^-2)<23.3 and the ionization parameter range to -1.9<logU<0.4. The simulations also suggest the absorber is located between 0.03 and 0.49 pc from the continuum emission region. This range in physical properties is consistent with an absorber of similar velocity seen in NGC 4151 from previous ultraviolet and optical studies, but with high column density X-ray absorbing components not present. The mass outflow rate due to the fifth epoch absorber is in the range 0.008 to 0.38 M_sun/yr, too low to contribute to galaxy feedback effects.
We present the first extensive study of the coronal line variability in an active galaxy. Our data set for the nearby source NGC 4151 consists of six epochs of quasi-simultaneous optical and near-infrared spectroscopy spanning a period of about eight
Spectra taken with the Space Telescope Imaging Spectrograph (STIS) allow accurate location and extraction of the nuclear spectrum of NGC 4151, with minimal contamination by extended line emission and circumnuclear starlight. Spectra since 1997 show t
We have analysed Chandra/High Energy Transmission Gratings spectra of the X-ray emission line gas in the Seyfert galaxy NGC 4151. The zeroth order spectral images show extended H- and He-like O and Ne, up to a distance $r sim$ 200 pc from the nucleus
A key characteristic of many active galactic nuclei (AGN) is their variability, but its origin is poorly understood, especially in the radio domain. Williams et al. (2017) reported a ~50 per cent increase in peak flux density of the AGN in the Seyfer
NGC 4151 is the brightest Seyfert 1 nucleus in X-rays. It was the first object to show short time delays in the Fe K band, which were attributed to relativistic reverberation, providing a new tool for probing regions at the black hole scale. Here, we