ﻻ يوجد ملخص باللغة العربية
Observations of the Pluto-Charon system, acquired with the ALMA interferometer on June 12-13, 2015, have yielded a detection of the CO(3-2) and HCN(4-3) rotational transitions from Pluto, providing a strong confirmation of the presence of CO, and the first observation of HCN, in Plutos atmosphere. The CO and HCN lines probe Plutos atmosphere up to ~450 km and ~900 km altitude, respectively. The CO detection yields (i) a much improved determination of the CO mole fraction, as 515+/-40 ppm for a 12 ubar surface pressure (ii) clear evidence for a well-marked temperature decrease (i.e., mesosphere) above the 30-50 km stratopause and a best-determined temperature of 70+/-2 K at 300 km, in agreement with recent inferences from New Horizons / Alice solar occultation data. The HCN line shape implies a high abundance of this species in the upper atmosphere, with a mole fraction >1.5x10-5 above 450 km and a value of 4x10-5 near 800 km. The large HCN abundance and the cold upper atmosphere imply supersaturation of HCN to a degree (7-8 orders of magnitude) hitherto unseen in planetary atmospheres, probably due to the slow kinetics of condensation at the low pressure and temperature conditions of Plutos upper atmosphere. HCN is also present in the bottom ~100 km of the atmosphere, with a 10-8 - 10-7 mole fraction; this implies either HCN saturation or undersaturation there, depending on the precise stratopause temperature. The HCN column is (1.6+/-0.4)x10^14 cm-2, suggesting a surface-referred net production rate of ~2x10^7 cm-2s-1. Although HCN rotational line cooling affects Plutos atmosphere heat budget, the amounts determined in this study are insufficient to explain the well-marked mesosphere and upper atmospheres ~70 K temperature. We finally report an upper limit on the HC3N column density (< 2x10^13 cm-2) and on the HC15N / HC14N ratio (< 1/125).
Haze in Plutos atmosphere was detected in images by both the Long Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. LORRI observed haze up to altitudes of at least 200 km above Plutos surface at
Combining stellar occultation observations probing Plutos atmosphere from 1988 to 2013 and models of energy balance between Plutos surface and atmosphere, we conclude that Plutos atmosphere does not collapse at any point in its 248-year orbit. The oc
Triton possesses a thin atmosphere, primarily composed of nitrogen, sustained by the sublimation of surface ices. The goal is to determine the composition of Tritons atmosphere and to constrain the nature of surface-atmosphere interactions. We perfor
We analyze two multi-chord stellar occultations by Pluto observed on July 18th, 2012 and May 4th, 2013, and monitored respectively from five and six sites. They provide a total of fifteen light-curves, twelve of them being used for a simultaneous fit
The origin of the atmosphere of the largest moon of Saturn, Titan, is poorly understood and its chemistry is rather complicated. Ground-based millimeter/sub-millimeter heterodyne spectroscopy resolves line shapes sufficiently to determine information