ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence Rate for Spectral Distribution of Addition of Random Matrices

124   0   0.0 ( 0 )
 نشر من قبل Zhigang Bao
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $A$ and $B$ be two $N$ by $N$ deterministic Hermitian matrices and let $U$ be an $N$ by $N$ Haar distributed unitary matrix. It is well known that the spectral distribution of the sum $H=A+UBU^*$ converges weakly to the free additive convolution of the spectral distributions of $A$ and $B$, as $N$ tends to infinity. We establish the optimal convergence rate ${frac{1}{N}}$ in the bulk of the spectrum.



قيم البحث

اقرأ أيضاً

We consider the sum of two large Hermitian matrices $A$ and $B$ with a Haar unitary conjugation bringing them into a general relative position. We prove that the eigenvalue density on the scale slightly above the local eigenvalue spacing is asymptoti cally given by the free convolution of the laws of $A$ and $B$ as the dimension of the matrix increases. This implies optimal rigidity of the eigenvalues and optimal rate of convergence in Voiculescus theorem. Our previous works [3,4] established these results in the bulk spectrum, the current paper completely settles the problem at the spectral edges provided they have the typical square-root behavior. The key element of our proof is to compensate the deterioration of the stability of the subordination equations by sharp error estimates that properly account for the local density near the edge. Our results also hold if the Haar unitary matrix is replaced by the Haar orthogonal matrix.
The topic of this paper is the typical behavior of the spectral measures of large random matrices drawn from several ensembles of interest, including in particular matrices drawn from Haar measure on the classical Lie groups, random compressions of r andom Hermitian matrices, and the so-called random sum of two independent random matrices. In each case, we estimate the expected Wasserstein distance from the empirical spectral measure to a deterministic reference measure, and prove a concentration result for that distance. As a consequence we obtain almost sure convergence of the empirical spectral measures in all cases.
The eigenvalue distribution of the sum of two large Hermitian matrices, when one of them is conjugated by a Haar distributed unitary matrix, is asymptotically given by the free convolution of their spectral distributions. We prove that this convergen ce also holds locally in the bulk of the spectrum, down to the optimal scales larger than the eigenvalue spacing. The corresponding eigenvectors are fully delocalized. Similar results hold for the sum of two real symmetric matrices, when one is conjugated by a Haar orthogonal matrix.
131 - Zhigang Bao , Yukun He 2019
Let $F_N$ and $F$ be the empirical and limiting spectral distributions of an $Ntimes N$ Wigner matrix. The Cram{e}r-von Mises (CvM) statistic is a classical goodness-of-fit statistic that characterizes the distance between $F_N$ and $F$ in $ell^2$-no rm. In this paper, we consider a mesoscopic approximation of the CvM statistic for Wigner matrices, and derive its limiting distribution. In the appendix, we also give the limiting distribution of the CvM statistic (without approximation) for the toy model CUE.
This paper considers the empirical spectral measure of a power of a random matrix drawn uniformly from one of the compact classical matrix groups. We give sharp bounds on the $L_p$-Wasserstein distances between this empirical measure and the uniform measure on the circle, which show a smooth transition in behavior when the power increases and yield rates on almost sure convergence when the dimension grows. Along the way, we prove the sharp logarithmic Sobolev inequality on the unitary group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا