ﻻ يوجد ملخص باللغة العربية
There are several approaches to analyse the worst-case response times of sporadic packets transmitted over priority-preemptive wormhole networks. In this paper, we provide an overview of the different approaches, discuss their strengths and weaknesses, and propose an approach that captures all effects considered by previous approaches while providing tight yet safe upper bounds for packet response times. We specifically address the problems created by buffering and backpressure in wormhole networks, which amplifies the problem of indirect interference in a way that has not been considered by the early analysis approaches. Didactic examples and large-scale experiments with synthetically generated packet flow sets provide evidence of the strength of the proposed approach.
Simulations and runtime measurements are some of the methods which can be used to evaluate whether a given NoC-based platform can accommodate application workload and fulfil its timing requirements. Yet, these techniques are often time-consuming, and
Myopic is a hard real-time process scheduling algorithm that selects a suitable process based on a heuristic function from a subset (Window)of all ready processes instead of choosing from all available processes, like original heuristic scheduling al
Inter-datacenter networks connect dozens of geographically dispersed datacenters and carry traffic flows with highly variable sizes and different classes. Adaptive flow routing can improve efficiency and performance by assigning paths to new flows ac
The recent line of research into topology design focuses on lowering network diameter. Many low-diameter topologies such as Slim Fly or Jellyfish that substantially reduce cost, power consumption, and latency have been proposed. A key challenge in re
With traditional open-loop scheduling of network resources, the quality-of-control (QoC) of networked control systems (NCSs) may degrade significantly in the presence of limited bandwidth and variable workload. The goal of this work is to maximize th