ﻻ يوجد ملخص باللغة العربية
We present a generalized Landau-Brazovskii theory for the solidification of chiral molecules on a spherical surface. With increasing sphere radius one encounters first intervals where robust achiral density modulations appear with icosahedral symmetry via first-order transitions. Next, one en- counters intervals where fragile but stable icosahedral structures still can be constructed but only by superposition of multiple irreducible representations. Chiral icoshedral structures appear via continuous or very weakly first-order transitions. Outside these parameter intervals, icosahedral symmetry is broken along a three-fold axis or a five-fold axis. The predictions of the theory are compared with recent numerical simulations.
We present a generalized Landau-Brazovskii free energy for the solidification of chiral molecules on a spherical surface in the context of the assembly of viral shells. We encounter two types of icosahedral solidification transitions. The first type
A general phase-plot is proposed for discrete particle shells that allows for thermal fluctuations of the shell geometry and of the inter-particle connectivities. The phase plot contains a first-order melting transition, a buckling transition and a c
Cells possess non-membrane-bound bodies, many of which are now understood as phase-separated condensates. One class of such condensates is composed of two polymer species, where each consists of repeated binding sites that interact in a one-to-one fa
Inspired by recent experiments on the effects of cytosolic crowders on the organization of bacterial chromosomes, we consider a feather-boa type model chromosome in the presence of non-additive crowders, encapsulated within a cylindrical cell. We obs
Cytoskeletal motor proteins are involved in major intracellular transport processes which are vital for maintaining appropriate cellular function. The motor exhibits distinct states of motility: active motion along filaments, and effectively stationa