ﻻ يوجد ملخص باللغة العربية
We continue investigating the interaction between flatness and $mathfrak{a}$-adic completion for infinitely generated modules over a commutative ring $A$. We introduce the concept of $mathfrak{a}$-adic flatness, which is weaker than flatness. We prove that $mathfrak{a}$-adic flatness is preserved under completion when the ideal $mathfrak{a}$ is weakly proregular. We also prove that when $A$ is noetherian, $mathfrak{a}$-adic flatness coincides with flatness (for complete modules). An example is worked out of a non-noetherian ring $A$, with a weakly proregular ideal $mathfrak{a}$, for which the completion $hat{A}$ is not flat. We also study $mathfrak{a}$-adic systems, and prove that if the ideal $mathfrak{a}$ is finitely generated, then the limit of any $mathfrak{a}$-adic system is a complete module.
This paper has two parts. In the first part we recall the important role that weak proregularity of an ideal in a commutative ring has in derived completion and in adic flatness. We also introduce the new concepts of idealistic and sequential derived
We study when $R to S$ has the property that prime ideals of $R$ extend to prime ideals or the unit ideal of $S$, and the situation where this property continues to hold after adjoining the same indeterminates to both rings. We prove that if $R$ is r
In a paper in 1962, Golod proved that the Betti sequence of the residue field of a local ring attains an upper bound given by Serre if and only if the homology algebra of the Koszul complex of the ring has trivial multiplications and trivial Massey o
We study the homological algebra of an R = Q/I module M using A-infinity structures on Q-projective resolutions of R and M. We use these higher homotopies to construct an R-projective bar resolution of M, Q-projective resolutions for all R-syzygies o
We introduce the notions of Koszul $N$-complex, $check{mathrm{C}}$ech $N$-complex and telescope $N$-complex, explicit derived torsion and derived completion functors in the derived category $mathbf{D}_N(R)$ of $N$-complexes using the $check{mathrm{C}