ﻻ يوجد ملخص باللغة العربية
We show that the nonlinear stage of modulational instability induced by parametric driving in the {em defocusing} nonlinear Schrodinger equation can be accurately described by combining mode truncation and averaging methods, valid in the strong driving regime. The resulting integrable oscillator reveals a complex hidden heteroclinic structure of the instability. A remarkable consequence, validated by the numerical integration of the original model, is the existence of breather solutions separating different Fermi-Pasta-Ulam recurrent regimes. Our theory also shows that optimal parametric amplification unexpectedly occurs outside the bandwidth of the resonance (or Arnold tongues) arising from the linearised Floquet analysis.
Solitons and breathers are localized solutions of integrable systems that can be viewed as particles of complex statistical objects called soliton and breather gases. In view of the growing evidence of their ubiquity in fluids and nonlinear optical m
We propose a novel, analytically tractable, scenario of the rogue wave formation in the framework of the small-dispersion focusing nonlinear Schrodinger (NLS) equation with the initial condition in the form of a rectangular barrier (a box). We use th
We present experimental evidence of the universal emergence of the Peregrine soliton predicted in the semi-classical (zero-dispersion) limit of the focusing nonlinear Schr{o}dinger equation [Comm. Pure Appl. Math. {bf 66}, 678 (2012)]. Experiments st
We discuss spatial dynamics and collapse scenarios of localized waves governed by the nonlinear Schr{o}dinger equation with nonlocal nonlinearity. Firstly, we prove that for arbitrary nonsingular attractive nonlocal nonlinear interaction in arbitrary
The generalized perturbative reduction method is used to find the two-component vector breather solution of the Born-Infeld equation $ U_{tt} -C U_{zz} = - A U_{t}^{2} U_{zz} - sigma U_{z}^{ 2} U_{tt} + B U_{z} U_{t} U_{zt} $. It is shown that the so