ﻻ يوجد ملخص باللغة العربية
The internal structure of gas giant planets may be more complex than the commonly assumed core-envelope structure with an adiabatic temperature profile. Different primordial internal structures as well as various physical processes can lead to non-homogenous compositional distributions. A non-homogenous internal structure has a significant impact on the thermal evolution and final structure of the planets. In this paper, we present alternative structure and evolution models for Jupiter and Saturn allowing for non-adiabatic primordial structures and the mixing of heavy elements by convection as these planets evolve. We present the evolution of the planets accounting for various initial composition gradients, and in the case of Saturn, include the formation of a helium-rich region as a result of helium rain. We investigate the stability of regions with composition gradients against convection, and find that the helium shell in Saturn remains stable and does not mix with the rest of the envelope. In other cases, convection mixes the planetary interior despite the existence of compositional gradients, leading to the enrichment of the envelope with heavy elements. We show that non-adiabatic structures (and cooling histories) for both Jupiter and Saturn are feasible. The interior temperatures in that case are much higher that for standard adiabatic models. We conclude that the internal structure is directly linked to the formation and evolution history of the planet. These alternative internal structures of Jupiter and Saturn should be considered when interpreting the upcoming Juno and Cassini data.
Saturn formed beyond the snow line in the primordial solar nebula that made it possible for it to accrete a large mass. Disk instability and core accretion models have been proposed for Saturns formation, but core accretion is favored on the basis of
We present thermal model fits for 11 Jovian and 3 Saturnian irregular satellites based on measurements from the WISE/NEOWISE dataset. Our fits confirm spacecraft-measured diameters for the objects with in situ observations (Himalia and Phoebe) and pr
The observation of gaseous giant planets is of high scientific interest. Although they have been the targets of several spacecraft missions, there still remains a need for continuous ground-based observations. As their atmospheres present fast dynami
The discovery of high incidence of hot Jupiters in dense clusters challenges the field-based hot Jupiter formation theory. In dense clusters, interactions between planetary systems and flyby stars are relatively common. This has a significant impact
We examine how the late divergent migration of Jupiter and Saturn may have perturbed the terrestrial planets. We identify six secular resonances between the nu_5 apsidal eigenfrequency of Jupiter and Saturn and the four eigenfrequencies of the terres