ﻻ يوجد ملخص باللغة العربية
Motivated by recent developments in the experimental study of superconducting graphene and transition metal dichalcogenides, we investigate superconductivity of the Kane-Mele (KM) model with short-range attractive interactions on the two-dimensional honeycomb lattice. We show that intra-valley spin-triplet pairing arises from nearest-neighbor (NN) attractive interaction and the intrinsic spin-orbit coupling. We demonstrate this in two independent approaches: We study superconducting instability driven by condensation of Cooperons, which are in-gap bound states of two conduction electrons, within the $T$-matrix approximation and also study the superconducting ground state within the mean-field theory. We find that Cooperons with antiparallel spins condense at the $K$ and $K$ points. This leads to the emergence of an intra-valley spin-triplet pairing state belonging to the irreducible representation A$_1$ of the point group $C_{6v}$. The fact that this pairing state has opposite chirality for $K$ and $K$ identifies this state as a helical valley-triplet state, the valley-analog to the $^3$He-B phase in two dimension. Because of the finite center of mass momentum of Cooper pairs, the pair amplitude in NN bonds exhibits spatial modulation on the length scale of lattice constant, such that this pairing state may be viewed as a pair-density wave state. We find that the pair amplitude spontaneously breaks the translational symmetry and exhibits a $p$-Kekule pattern. We also discuss the selection rule for pairing states focusing the characteristic band structure of the KM model and the Berry phase effects to the emergence of the intra-valley pairing state.
We predict two topological superconducting phases in microscopic models arising from the Berry phase associated with the valley degree of freedom in gapped Dirac honeycomb systems. The first one is a topological helical spin-triplet superconductor wi
While multiband systems are usually considered for flat-band physics, here we study one-band models that have flat portions in the dispersion to explore correlation effects in the 2D repulsive Hubbard model in an intermediate coupling regime. The FLE
Motivated by recent experiments on atomic Dirac fermions in a tunable honeycomb optical lattice, we study the attractive Hubbard model of superfluidity in the anisotropic honeycomb lattice. At weak-coupling, we find that the maximum mean field pairin
The origin of the exceptionally strong superconductivity of cuprates remains a subject of debate after more than two decades of investigation. Here we follow a new lead: The onset temperature for superconductivity scales with the strength of the anom
We show theoretically that double photoemission (2$e$-ARPES) may be used to identify the pairing state in superconductors in which the Cooper pairs have a nonzero center-of-mass momentum, ${bf q}_{cm}$. We theoretically evaluate the 2$e$ ARPES counti