ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring Turbulence in TW Hya with ALMA: Methods and Limitations

98   0   0.0 ( 0 )
 نشر من قبل Richard Teague
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain high spatial and spectral resolution images of the CO J=2-1, CN N=2-1 and CS J=5-4 emission with ALMA in Cycle~2. The radial distribution of the turbulent broadening is derived with three approaches: two `direct and one modelling. The first requires a single transition and derives Tex{} directly from the line profile, yielding a vturb{}. The second assumes two different molecules are co-spatial thus their relative linewidths allow for a calculation of Tkin{} and vturb{}. Finally we fit a parametric disk model where physical properties of the disk are described by power laws, to compare our `direct methods with previous values. The two direct methods were limited to the outer $r > 40$~au disk due to beam smear. The direct method found vturb{} ranging from $approx$~vel{130} at 40~au, dropping to $approx$~vel{50} in the outer disk, qualitatively recovered with the parametric model fitting. This corresponds to roughly $0.2 - 0.4~c_s$. CN was found to exhibit strong non-LTE effects outside $r approx 140$~au, so vturb{} was limited to within this radius. The assumption that CN and CS are co-spatial is consistent with observed linewidths only within $r lesssim 100$~au, within which vturb{} was found to drop from vel{100} ($approx~0.4~c_s$) to nothing at 100~au. The parametric model yielded a near constant vel{50} for CS ($0.2 - 0.4~c_s$). We demonstrate that absolute flux calibration is and will be the limiting factor in all studies of turbulence using a single molecule. The magnitude of the dispersion is comparable with or below that predicted by the magneto-rotational instability theory. A more precise comparison would require to reach an absolute calibration precision of order 3%, or to find a suitable combination of light and heavy molecules which are co-located in the disk.



قيم البحث

اقرأ أيضاً

We analyze high angular resolution ALMA observations of the TW Hya disk to place constraints on the CO and dust properties. We present new, sensitive observations of the $^{12}$CO $J = 3-2$ line at a spatial resolution of 8 AU (0farcs14). The CO emis sion exhibits a bright inner core, a shoulder at $rapprox70$ AU, and a prominent break in slope at $rapprox90$ AU. Radiative transfer modeling is used to demonstrate that the emission morphology can be reasonably reproduced with a $^{12}$CO column density profile featuring a steep decrease at $rapprox15$ AU and a secondary bump peaking at $rapprox70$ AU. Similar features have been identified in observations of rarer CO isotopologues, which trace heights closer to the midplane. Substructure in the underlying gas distribution or radially varying CO depletion that affects much of the disks vertical extent may explain the shared emission features of the main CO isotopologues. We also combine archival 1.3 mm and 870 $mu$m continuum observations to produce a spectral index map at a spatial resolution of 2 AU. The spectral index rises sharply at the continuum emission gaps at radii of 25, 41, and 47 AU. This behavior suggests that the grains within the gaps are no larger than a few millimeters. Outside the continuum gaps, the low spectral index values of $alphaapprox 2$ indicate either that grains up to centimeter size are present, or that the bright continuum rings are marginally optically thick at millimeter wavelengths.
We report observations of the cyanide anion, CN, in the disk around TW~Hya covering the $N=1-0$, $N=2-1$ and $N=3-2$ transitions. Using line stacking techniques, 24 hyperfine transitions are detected out of the 30 within the observed frequency ranges . Exploiting the super-spectral resolution from the line stacking method reveals the splitting of hyperfine components previously unresolved by laboratory spectroscopy. All transitions display a similar emission morphology, characterized by an azimuthally symmetric ring, peaking at $approx 45$~au (0.75), and a diffuse outer tail extending out to the disk edge at $approx 200$~au. Excitation analyses assuming local thermodynamic equilibrium (LTE) yield excitation temperatures in excess of the derived kinetic temperatures based on the local line widths for all fine structure groups, suggesting assumptions of LTE are invalid. Using the 0D radiative transfer code RADEX, we demonstrate that such non-LTE effects may be present when the local H$_2$ density drops to $10^{7}~{rm cm^{-3}}$ and below. Comparison with models of TW~Hya find similar densities at elevated regions in the disk, typically $z , / , r gtrsim 0.2$, consistent with model predictions where CN is formed via vibrationally excited H$_2$ in the disk atmospheric layers where UV irradiation is less attenuated.
Gas-phase methanol was recently detected in a protoplanetary disk for the first time with ALMA. The peak abundance and distribution of methanol observed in TW Hya differed from that predicted by chemical models. Here, the chemistry of methanol gas an d ice is calculated using a physical model tailored for TW Hya with the aim to contrast the results with the recent detection in this source. New pathways for the formation of larger complex molecules (e.g., ethylene glycol) are included in an updated chemical model, as well as the fragmentation of methanol ice upon photodesorption. It is found that including fragmentation upon photodesorption improves the agreement between the peak abundance reached in the chemical models with that observed in TW Hya ($sim 10^{-11}$ with respect to ce{H2}); however, the model predicts that the peak in emission resides a factor of $2-3$ farther out in the disk than the ALMA images. Reasons for the persistent differences in the gas-phase methanol distribution between models and the observations of TW Hya are discussed. These include the location of the ice reservoir which may coincide with the compact mm-dust disk ($lesssim 60$~au) and sources of gas-phase methanol which have not yet been considered in models. The possibility of detecting larger molecules with ALMA is also explored. Calculations of the rotational spectra of complex molecules other than methanol using a parametric model constrained by the TW Hya observations suggest that the detection of individual emission lines of complex molecules with ALMA remains challenging. However, the signal-to-noise ratio can be enhanced via stacking of multiple transitions which have similar upper energy levels.
337 - Kamber R. Schwarz 2016
CO is widely used as a tracer of molecular gas. However, there is now mounting evidence that gas phase carbon is depleted in the disk around TW Hya. Previous efforts to quantify this depletion have been hampered by uncertainties regarding the radial thermal structure in the disk. Here we present resolved ALMA observations of 13CO 3-2, C18O 3-2, 13CO 6-5, and C18O 6-5 emission in TW Hya, which allow us to derive radial gas temperature and gas surface density profiles, as well as map the CO abundance as a function of radius. These observations provide a measurement of the surface CO snowline at ~30 AU and show evidence for an outer ring of CO emission centered at 53 AU, a feature previously seen only in less abundant species. Further, the derived CO gas temperature profile constrains the freeze-out temperature of CO in the warm molecular layer to < 21 K. Combined with the previous detection of HD 1-0, these data constrain the surface density of the warm H2 gas in the inner ~30 AU. We find that CO is depleted by two orders of magnitude from R=10-60 AU, with the small amount of CO returning to the gas phase inside the surface CO snowline insufficient to explain the overall depletion. Finally, this new data is used in conjunction with previous modeling of the TW Hya disk to constrain the midplane CO snowline to 17-23 AU.
We present a detailed analysis of the spatially and spectrally resolved 12CO J=2-1 and J=3-2 emission lines from the TW Hya circumstellar disk, based on science verification data from the Atacama Large Millimeter/Submillimeter Array (ALMA). These lin es exhibit substantial emission in their high-velocity wings (with projected velocities out to 2.1 km/s, corresponding to intrinsic orbital velocities >20 km/s) that trace molecular gas as close as 2 AU from the central star. However, we are not able to reproduce the intensity of these wings and the general spatio-kinematic pattern of the lines with simple models for the disk structure and kinematics. Using three-dimensional non-local thermodynamic equilibrium molecular excitation and radiative transfer calculations, we construct some alternative models that successfully account for these features by modifying either (1) the temperature structure of the inner disk (inside the dust-depleted disk cavity; r < 4 AU); (2) the intrinsic (Keplerian) disk velocity field; or (3) the distribution of disk inclination angles (a warp). The latter approach is particularly compelling because a representative warped disk model qualitatively reproduces the observed azimuthal modulation of optical light scattered off the disk surface. In any model scenario, the ALMA data clearly require a substantial molecular gas reservoir located inside the region where dust optical depths are known to be substantially diminished in the TW Hya disk, in agreement with previous studies based on infrared spectroscopy. The results from these updated model prescriptions are discussed in terms of their potential physical origins, which might include dynamical perturbations from a low-mass companion with an orbital separation of a few AU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا