ترغب بنشر مسار تعليمي؟ اضغط هنا

Horizontally Scalable Submodular Maximization

76   0   0.0 ( 0 )
 نشر من قبل Mario Lucic
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

A variety of large-scale machine learning problems can be cast as instances of constrained submodular maximization. Existing approaches for distributed submodular maximization have a critical drawback: The capacity - number of instances that can fit in memory - must grow with the data set size. In practice, while one can provision many machines, the capacity of each machine is limited by physical constraints. We propose a truly scalable approach for distributed submodular maximization under fixed capacity. The proposed framework applies to a broad class of algorithms and constraints and provides theoretical guarantees on the approximation factor for any available capacity. We empirically evaluate the proposed algorithm on a variety of data sets and demonstrate that it achieves performance competitive with the centralized greedy solution.



قيم البحث

اقرأ أيضاً

Many large-scale machine learning problems--clustering, non-parametric learning, kernel machines, etc.--require selecting a small yet representative subset from a large dataset. Such problems can often be reduced to maximizing a submodular set functi on subject to various constraints. Classical approaches to submodular optimization require centralized access to the full dataset, which is impractical for truly large-scale problems. In this paper, we consider the problem of submodular function maximization in a distributed fashion. We develop a simple, two-stage protocol GreeDi, that is easily implemented using MapReduce style computations. We theoretically analyze our approach, and show that under certain natural conditions, performance close to the centralized approach can be achieved. We begin with monotone submodular maximization subject to a cardinality constraint, and then extend this approach to obtain approximation guarantees for (not necessarily monotone) submodular maximization subject to more general constraints including matroid or knapsack constraints. In our extensive experiments, we demonstrate the effectiveness of our approach on several applications, including sparse Gaussian process inference and exemplar based clustering on tens of millions of examples using Hadoop.
99 - Fengjiao Li , Jia Liu , 2021
In this paper, we study the problem of fair worker selection in Federated Learning systems, where fairness serves as an incentive mechanism that encourages more workers to participate in the federation. Considering the achieved training accuracy of t he global model as the utility of the selected workers, which is typically a monotone submodular function, we formulate the worker selection problem as a new multi-round monotone submodular maximization problem with cardinality and fairness constraints. The objective is to maximize the time-average utility over multiple rounds subject to an additional fairness requirement that each worker must be selected for a certain fraction of time. While the traditional submodular maximization with a cardinality constraint is already a well-known NP-Hard problem, the fairness constraint in the multi-round setting adds an extra layer of difficulty. To address this novel challenge, we propose three algorithms: Fair Continuous Greedy (FairCG1 and FairCG2) and Fair Discrete Greedy (FairDG), all of which satisfy the fairness requirement whenever feasible. Moreover, we prove nontrivial lower bounds on the achieved time-average utility under FairCG1 and FairCG2. In addition, by giving a higher priority to fairness, FairDG ensures a stronger short-term fairness guarantee, which holds in every round. Finally, we perform extensive simulations to verify the effectiveness of the proposed algorithms in terms of the time-average utility and fairness satisfaction.
Continuous submodular functions are a category of generally non-convex/non-concave functions with a wide spectrum of applications. The celebrated property of this class of functions - continuous submodularity - enables both exact minimization and app roximate maximization in poly. time. Continuous submodularity is obtained by generalizing the notion of submodularity from discrete domains to continuous domains. It intuitively captures a repulsive effect amongst different dimensions of the defined multivariate function. In this paper, we systematically study continuous submodularity and a class of non-convex optimization problems: continuous submodular function maximization. We start by a thorough characterization of the class of continuous submodular functions, and show that continuous submodularity is equivalent to a weak version of the diminishing returns (DR) property. Thus we also derive a subclass of continuous submodular functions, termed continuous DR-submodular functions, which enjoys the full DR property. Then we present operations that preserve continuous (DR-)submodularity, thus yielding general rules for composing new submodular functions. We establish intriguing properties for the problem of constrained DR-submodular maximization, such as the local-global relation. We identify several applications of continuous submodular optimization, ranging from influence maximization, MAP inference for DPPs to provable mean field inference. For these applications, continuous submodularity formalizes valuable domain knowledge relevant for optimizing this class of objectives. We present inapproximability results and provable algorithms for two problem settings: constrained monotone DR-submodular maximization and constrained non-monotone DR-submodular maximization. Finally, we extensively evaluate the effectiveness of the proposed algorithms.
In this paper, we introduce a novel technique for constrained submodular maximization, inspired by barrier functions in continuous optimization. This connection not only improves the running time for constrained submodular maximization but also provi des the state of the art guarantee. More precisely, for maximizing a monotone submodular function subject to the combination of a $k$-matchoid and $ell$-knapsack constraint (for $ellleq k$), we propose a potential function that can be approximately minimized. Once we minimize the potential function up to an $epsilon$ error it is guaranteed that we have found a feasible set with a $2(k+1+epsilon)$-approximation factor which can indeed be further improved to $(k+1+epsilon)$ by an enumeration technique. We extensively evaluate the performance of our proposed algorithm over several real-world applications, including a movie recommendation system, summarization tasks for YouTube videos, Twitter feeds and Yelp business locations, and a set cover problem.
In this work we consider the problem of online submodular maximization under a cardinality constraint with differential privacy (DP). A stream of $T$ submodular functions over a common finite ground set $U$ arrives online, and at each time-step the d ecision maker must choose at most $k$ elements of $U$ before observing the function. The decision maker obtains a payoff equal to the function evaluated on the chosen set, and aims to learn a sequence of sets that achieves low expected regret. In the full-information setting, we develop an $(varepsilon,delta)$-DP algorithm with expected $(1-1/e)$-regret bound of $mathcal{O}left( frac{k^2log |U|sqrt{T log k/delta}}{varepsilon} right)$. This algorithm contains $k$ ordered experts that learn the best marginal increments for each item over the whole time horizon while maintaining privacy of the functions. In the bandit setting, we provide an $(varepsilon,delta+ O(e^{-T^{1/3}}))$-DP algorithm with expected $(1-1/e)$-regret bound of $mathcal{O}left( frac{sqrt{log k/delta}}{varepsilon} (k (|U| log |U|)^{1/3})^2 T^{2/3} right)$. Our algorithms contains $k$ ordered experts that learn the best marginal item to select given the items chosen her predecessors, while maintaining privacy of the functions. One challenge for privacy in this setting is that the payoff and feedback of expert $i$ depends on the actions taken by her $i-1$ predecessors. This particular type of information leakage is not covered by post-processing, and new analysis is required. Our techniques for maintaining privacy with feedforward may be of independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا