ﻻ يوجد ملخص باللغة العربية
We present a high-resolution study of five high-velocity clouds in the Magellanic Leading Arm region. This is a follow-up study of our widefield Parkes survey of the region in order to probe the multiphase structures of the clouds and to give an insight to their origin, evolution and distance. High-resolution data were obtained from the Australia Telescope Compact Array. By combining with single-dish data from the Galactic All-Sky Survey (GASS), we are able to probe compact and diffuse emission simultaneously. We identify resolved and unresolved clumps. Physical parameters were derived for both diffuse structure and compact clumps. The latter are cold with typical velocity linewidths of 5 km/s. We find a gradient in thermal halo pressure, hydrogen density and HI column density of HVC as a function of Galactic latitude. This is possibly the first observational evidence of varying distance in the Leading Arm region, with the leading part of the Leading Arm (LA II and III) probably being closer to the Galactic disc than the trailing end (LA I).
We present a catalog of high-velocity clouds in the region of the Magellanic Leading Arm. The catalog is based on neutral hydrogen (HI) observations from the Parkes Galactic All-Sky Survey (GASS). Excellent spectral resolution allows clouds with narr
The Leading Arm (LA) of the Magellanic Stream is a vast debris field of H I clouds connecting the Milky Way and the Magellanic Clouds. It represents an example of active gas accretion onto the Galaxy. Previously only one chemical abundance measuremen
We observed two compact high-velocity clouds HVC 291+26+195 and HVC 297+09+253 to analyse their structure, dynamics, and physical parameters. In both cases there is evidence for an association with the Leading Arm of the Magellanic Clouds. The goal o
The Leading Arm is a tidal feature that is in front of the Magellanic Clouds on their orbit through the Galaxys halo. Many physical properties of the Leading Arm, such as its mass and size, are poorly constrained because it has few distance measureme
We have analyzed the Magellanic Stream (MS) using the deepest and the most resolved H I survey of the Southern Hemisphere (the Galactic All-Sky Survey). The overall Stream is structured into two filaments, suggesting two ram-pressure tails lagging be