ﻻ يوجد ملخص باللغة العربية
We report on the discovery and characterization of the transiting planet K2-39b (EPIC 206247743b). With an orbital period of 4.6 days, it is the shortest-period planet orbiting a subgiant star known to date. Such planets are rare, with only a handful of known cases. The reason for this is poorly understood, but may reflect differences in planet occurrence around the relatively high-mass stars that have been surveyed, or may be the result of tidal destruction of such planets. K2-39 is an evolved star with a spectroscopically derived stellar radius and mass of $3.88^{+0.48}_{-0.42}~mathrm{R_odot}$ and $1.53^{+0.13}_{-0.12}~mathrm{M_odot}$, respectively, and a very close-in transiting planet, with $a/R_star = 3.4$. Radial velocity (RV) follow-up using the HARPS, FIES and PFS instruments leads to a planetary mass of $50.3^{+9.7}_{-9.4}~mathrm{M_oplus}$. In combination with a radius measurement of $8.3 pm 1.1~mathrm{R_oplus}$, this results in a mean planetary density of $0.50^{+0.29}_{-0.17}$ g~cm$^{-3}$. We furthermore discover a long-term RV trend, which may be caused by a long-period planet or stellar companion. Because K2-39b has a short orbital period, its existence makes it seem unlikely that tidal destruction is wholly responsible for the differences in planet populations around subgiant and main-sequence stars. Future monitoring of the transits of this system may enable the detection of period decay and constrain the tidal dissipation rates of subgiant stars.
Strongly irradiated giant planets are observed to have radii larger than thermal evolution models predict. Although these inflated planets have been known for over fifteen years, it is unclear whether their inflation is caused by deposition of energy
The Neptune desert is a feature seen in the radius-mass-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here we report the {it TESS} discovery of a new short-period planet in the Neptune desert, orbiting the G-t
We validate a $R_p=2.32pm 0.24R_oplus$ planet on a close-in orbit ($P=2.260455pm 0.000041$ days) around K2-28 (EPIC 206318379), a metal-rich M4-type dwarf in the Campaign 3 field of the K2 mission. Our follow-up observations included multi-band trans
Statistical analyses from exoplanet surveys around low-mass stars indicate that super-Earth and Neptune-mass planets are more frequent than gas giants around such stars, in agreement with core accretion theory of planet formation. Using precise radia
We confirm and characterize a close-in ($P_{rm{orb}}$ = 5.425 days), super-Neptune sized ($5.04^{+0.34}_{-0.37}$ Earth radii) planet transiting K2-33 (2MASS J16101473-1919095), a late-type (M3) pre-main sequence (11 Myr-old) star in the Upper Scorpiu