ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-domain and spectral properties of pulsars at 154 MHz

81   0   0.0 ( 0 )
 نشر من قبل Martin Bell Dr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 154 MHz Murchison Widefield Array imaging observations and variability information for a sample of pulsars. Over the declination range $-80^{circ} < {delta} < 10^{circ}$ we detect 17 known pulsars with mean flux density greater than 0.3 Jy. We explore the variability properties of this sample on timescales of minutes to years. For three of these pulsars, PSR J0953+0755, PSR J0437-4715 and PSR J0630-2834 we observe interstellar scintillation and variability on timescales of greater than 2 minutes. One further pulsar, PSR J0034-0721, showed significant variability, the physical origins of which are difficult to determine. The dynamic spectra for PSR J0953+0755 and PSR J0437-4715 show discrete time and frequency structure consistent with diffractive interstellar scintillation and we present the scintillation bandwidth and timescales from these observations. The remaining pulsars within our sample were statistically non-variable. We also explore the spectral properties of this sample and find spectral curvature in pulsars PSR J0835-4510, PSR J1752-2806 and PSR J0437-4715.



قيم البحث

اقرأ أيضاً

The Murchison Widefield Array (MWA), and its recently-developed Voltage Capture System (VCS), facilitates extending the low-frequency range of pulsar observations at high-time and -frequency resolution in the Southern Hemisphere, providing further in formation about pulsars and the ISM. We present the results of an initial time-resolved census of known pulsars using the MWA. To significantly reduce the processing load, we incoherently sum the detected powers from the 128 MWA tiles, which yields ~10% of the attainable sensitivity of the coherent sum. This preserves the large field-of-view (~450 deg2 at 185 MHz), allowing multiple pulsars to be observed simultaneously. We developed a WIde-field Pulsar Pipeline (WIPP) that processes the data from each observation and automatically folds every known pulsar located within the beam. We have detected 50 pulsars to date, 6 of which are millisecond pulsars. This is consistent with our expectation, given the telescope sensitivity and the sky coverage of the processed data (~17,000 deg2). For ten pulsars, we present the lowest-frequency detections published. For a subset of the pulsars, we present multi-frequency pulse profiles by combining our data with published profiles from other telescopes. Since the MWA is a low-frequency precursor to the Square Kilometre Array (SKA), we use our census results to forecast that a survey using Phase 1 of SKA-Low (SKA1-Low) can potentially detect around 9400 pulsars.
The nuclear starburst in the nearby galaxy M82 provides an excellent laboratory for understanding the physics of star formation. This galaxy has been extensively observed in the past, revealing tens of radio-bright compact objects embedded in a diffu se free-free absorbing medium. Our understanding of the structure and physics of this medium in M82 can be greatly improved by high-resolution images at low frequencies where the effects of free-free absorption are most prominent. The aims of this study are, firstly, to demonstrate imaging using international baselines of the Low Frequency Array (LOFAR), and secondly, to constrain low-frequency spectra of compact and diffuse emission in the central starburst region of M82 via high-resolution radio imaging at low frequencies. The international LOFAR telescope was used to observe M82 at 110-126MHz and 146-162MHz. Images were obtained using standard techniques from very long baseline interferometry. images were obtained at each frequency range: one only using international baselines, and one only using the longest Dutch (remote) baselines. The 154MHz image obtained using international baselines is a new imaging record in terms of combined image resolution (0.3$$) and sensitivity ($sigma$=0.15mJy/beam) at low frequencies ($<327$MHz). We detected 16 objects at 154MHz, six of these also at 118MHz. Four weaker but resolved features are also found: a linear (50pc) filament and three other resolved objects, of which two show a clear shell structure. We do not detect any emission from either supernova 2008iz or from the radio transient source 43.78+59.3. The images obtained using remote baselines show diffuse emission, associated with the outflow in M82, with reduced brightness in the region of the edge-on star-forming disk.
We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50c m receiver. These high-sensitivity, multi-frequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low or high-frequency cut-off and log-parabolic spectrum. While about $79 %$ of the pulsars that could be classified have simple power law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power law spectra is $-1.60 pm 0.03$. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.
We report preliminary results of our study of linear polarization in the pulsar emission at 35 & 327 MHz. We have exploited for this purpose the spectral modulation resulting from the differential Faraday rotation across the observed band. We discuss the results on a few bright pulsars by comparing them with the existing measurements at higher radio frequencies.
We have detected four flares from UV Ceti at 154 MHz using the Murchison Widefield Array. The flares have flux densities between 10--65 mJy --- a factor of 100 fainter than most flares in the literature at these frequencies --- and are only detected in polarization. The circular polarized fractions are limited to $>27$% at 3$sigma$ confidence and two of the flares exhibit polarity reversal. We suggest that these flares occur periodically on a time scale consistent with the rotational period of UV Ceti. During the brightest observed flare, we also detect significant linear polarization with polarization fraction $>18$%. Averaging the data in 6-minute, 10 MHz frequency bins we find that the flux density of these flares does not vary over the 30 MHz bandwidth of the Murchison Widefield Array, however we cannot rule out finer time-frequency structure. Using the measured flux densities for the flares, we estimate brightness temperatures between $(10^{13}-10^{14}),$K, indicative of a coherent emission mechanism. The brightness temperature and polarization characteristics point to the electron cyclotron maser mechanism. We also calculate the flare rates given our four observed flares and compare them to flare rates for the set of M dwarf stars with known 100--200 MHz flares. Our measurement is the first for flares with intensities $<100$ mJy at 100-200 MHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا