ﻻ يوجد ملخص باللغة العربية
We observed 146 Galactic clumps in HCN (4-3) and CS (7-6) with the Atacama Submillimeter Telescope Experiment (ASTE) 10-m telescope. A tight linear relationship between star formation rate and gas mass traced by dust continuum emission was found for both Galactic clumps and the high redshift (z>1) star forming galaxies (SFGs), indicating a constant gas depletion time of ~100 Myr for molecular gas in both Galactic clumps and high z SFGs. However, low z galaxies do not follow this relation and seem to have a longer global gas depletion time. The correlations between total infrared luminosities (L_TIR) and molecular line luminosities (L_mol) of HCN (4-3) and CS (7-6) are tight and sublinear extending down to clumps with LTIR~10^{3} L_sun. These correlations become linear when extended to external galaxies. A bimodal behavior in the LTIR--Lmol correlations was found for clumps with different dust temperature, luminosity-to-mass ratio, and sigmaline/sigmavir. Such bimodal behavior may be due to evolutionary effects. The slopes of LTIR--Lmol correlations become more shallow as clumps evolve. We compared our results with lower J transition lines in wu et al. (2010). The correlations between clump masses and line luminosities are close to linear for low effective excitation density tracers but become sublinear for high effective excitation density tracers for clumps with LTIR larger than LTIR~10^4.5 Lsun. High effective excitation density tracers cannot linearly trace the total clump masses, leading to a sublinear correlations for both Mclump-Lmol and LTIR-Lmol relations.
The disk around HD 142527 attracts a lot of attention, amongst others because of its resolved (sub) mm dust continuum that is concentrated into a horseshoe-shape towards the north of the star. In this manuscript we present spatially resolved ALMA det
ALMA Cycle 2 observations of the long wavelength dust emission in 180 star-forming (SF) galaxies are used to investigate the evolution of ISM masses at z = 1 to 6.4. The ISM masses exhibit strong increases from z = 0 to $rm <z>$ = 1.15 and further to
[ABRIDGED] We derive the dust properties for 753 local galaxies and examine how these relate to some of their physical properties. We model their global dust-SEDs, treated statistically as an ensemble within a hierarchical Bayesian dust-SED modeling
Fragmentation of massive dense molecular clouds is the starting point in the formation of rich clusters and massive stars. Theory and numerical simulations indicate that the population of the fragments (number, mass, diameter, separation) resulting f
We study the global SF law - the relation between gas and SFRs in a sample of 181 local galaxies with L_IR spanning almost five orders of magnitude, which includes 115 normal galaxies and 66 (U)LIRGs. We derive their atomic, molecular gas and dense m