ﻻ يوجد ملخص باللغة العربية
A theoretical frame for two-photon photoemission is derived from the general theory of pump-probe photoemission, assuming that not only the probe but also the pump pulse is sufficiently weak. This allows us to use a perturbative approach to compute the lesser Green function within the Keldysh formalism. Two-photon photoemission spectroscopy is a widely used analytical tool to study non-equilibrium phenomena in solid materials. Our theoretical approach aims at a material-specific, realistic and quantitative description of the time-dependent spectrum based on a picture of effectively independent electrons as described by the local-density approximation in band-structure theory. To this end we follow Pendrys one-step theory of the photoemission process as close as possible and heavily make use of concepts of multiple-scattering theory, such as the representation of the final state by a time-reversed low-energy electron diffraction state. The formalism is fully relativistic and allows for a quantitative calculation of the time-dependent photocurrent for moderately correlated systems like simple metals or more complex compounds like topological insulators. An application to the Ag(100) surface is discussed in detail.
A theoretical frame for pump-probe photoemission is presented. The approach is based on a general formulation using the Keldysh formalism for the lesser Greens function to describe the real-time evolution of the electronic degrees of freedom in the i
We provide here a roadmap for modeling silicon nano-devices with one or two group V donors (D). We discuss systems containing one or two electrons, that is, D^0, D^-, D_2^+ and D_2^0 centers. The impact of different levels of approximation is discuss
Single atoms absorb and emit light from a resonant laser beam photon by photon. We show that a single atom strongly coupled to an optical cavity can absorb and emit resonant photons in pairs. The effect is observed in a photon correlation experiment
A novel Bloch-waves based one-step theory of photoemission is developed within the augmented plane wave formalism. Implications of multi-Bloch-wave structure of photoelectron final states for band mapping are established. Interference between Bloch c
Employing femtosecond laser pulses in front and back side pumping of Au/Fe/MgO(001) combined with detection in two-photon photoelectron emission spectroscopy we analyze local relaxation dynamics of excited electrons in buried Fe, injection into Au ac