ﻻ يوجد ملخص باللغة العربية
We propose a low cost and effective way to combine a free simulation software and free CAD models for modeling human-object interaction in order to improve human & object segmentation. It is intended for research scenarios related to safe human-robot collaboration (SHRC) and interaction (SHRI) in the industrial domain. The task of human and object modeling has been used for detecting activity, and for inferring and predicting actions, different from those works, we do human and object modeling in order to learn interactions in RGB-D data for improving segmentation. For this purpose, we define a novel density function to model a three dimensional (3D) scene in a virtual environment (VREP). This density function takes into account various possible configurations of human-object and object-object relationships and interactions governed by their affordances. Using this function, we synthesize a large, realistic and highly varied synthetic RGB-D dataset that we use for training. We train a random forest classifier, and the pixelwise predictions obtained is integrated as a unary term in a pairwise conditional random fields (CRF). Our evaluation shows that modeling these interactions improves segmentation performance by ~7% in mean average precision and recall over state-of-the-art methods that ignore these interactions in real-world data. Our approach is computationally efficient, robust and can run real-time on consumer hardware.
Given two consecutive frames from a pair of stereo cameras, 3D scene flow methods simultaneously estimate the 3D geometry and motion of the observed scene. Many existing approaches use superpixels for regularization, but may predict inconsistent shap
We report the design and characterization of an optical shutter based on a piezoelectric cantilever. Compared to conventional electro-magnetic shutters, the device is intrinsically low power and acoustically quiet. The cantilever position is controll
This paper explores the use of a Bayesian non-parametric topic modeling technique for the purpose of anomaly detection in video data. We present results from two experiments. The first experiment shows that the proposed technique is automatically abl
In 2015 we began a sub-challenge at the EndoVis workshop at MICCAI in Munich using endoscope images of ex-vivo tissue with automatically generated annotations from robot forward kinematics and instrument CAD models. However, the limited background va
Recent works have widely explored the contextual dependencies to achieve more accurate segmentation results. However, most approaches rarely distinguish different types of contextual dependencies, which may pollute the scene understanding. In this wo