ﻻ يوجد ملخص باللغة العربية
We investigate the magnetic properties of quark matter in the inhomogeneous chiral phase, where both scalar and pseudoscalar condensates spatially modulate. The energy spectrum of the lowest Landau level becomes asymmetric about zero in the external magnetic field, and gives rise to the remarkably magnetic properties: quark matter has a spontaneous magnetization, while the magnetic susceptibility does not diverge on the critical point.
Inhomogeneous chiral phase is discussed in the presence of the magnetic field. A topological aspect is pointed out for the complex order parameter, in relation to the spectral asymmetry of the Dirac operator. It induces an anomalous baryon number and
Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero,
We study the chiral magnetic effect (CME) in the hadronic phase. The CME current involves pseudoscalar mesons to modify its functional form. This conclusion is independent of microscopic details. The strength of the CME current in the hadronic phase would decrease for two flavors.
The QCD phase diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU($3$) Polyakov linear sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase,
Working in the linear sigma model with quarks, we compute the finite-temperature effective potential in the presence of a weak magnetic field, including the contribution of the pion ring diagrams and considering the sigma as a classical field. In the