ترغب بنشر مسار تعليمي؟ اضغط هنا

First Detection of a Pulsar Bow Shock Nebula in Far-UV: PSR J0437-4715

138   0   0.0 ( 0 )
 نشر من قبل Blagoy Rangelov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pulsars traveling at supersonic speeds are often accompanied by cometary bow shocks seen in Halpha. We report on the first detection of a pulsar bow shock in the far-ultraviolet (FUV). We detected it in FUV images of the nearest millisecond pulsar J0437-4715 obtained with the Hubble Space Telescope. The images reveal a bow-like structure positionally coincident with part of the previously detected Halpha bow shock, with an apex at 10 ahead of the moving pulsar. Its FUV luminosity, L(1250-2000 A) ~ 5x10^28 erg/s, exceeds the Halpha luminosity from the same area by a factor of 10. The FUV emission could be produced by the shocked ISM matter or, less likely, by relativistic pulsar wind electrons confined by strong magnetic field fluctuations in the bow shock. In addition, in the FUV images we found a puzzling extended (~3 in size) structure overlapping with the limb of the bow shock. If related to the bow shock, it could be produced by an inhomogeneity in the ambient medium or an instability in the bow shock. We also report on a previously undetected X-ray emission extending for about 5 ahead of the pulsar, possibly a pulsar wind nebula created by shocked pulsar wind, with a luminosity L(0.5-8 keV) ~ 3x10^28 erg/s.



قيم البحث

اقرأ أيضاً

We observed a nearby millisecond pulsar J2124-3358 with the Hubble Space Telescope in broad far-UV (FUV) and optical filters. The pulsar is detected in both bands with fluxes F(1250-2000 A)= (2.5+/-0.3)x10^-16 erg/s/cm^2 and F(3800-6000 A)=(6.4+/-0.4 )x10^-17 erg/s/cm^2, which correspond to luminosities of ~5.8x10^27 and 1.4x10^27 erg/s, for d=410 pc and E(B-V)=0.03. The optical-FUV spectrum can be described by a power-law model, f_nu~nu^alpha, with slope alpha=0.18-0.48 for a conservative range of color excess, E(B-V)=0.01-0.08. Since a spectral flux rising with frequency is unusual for pulsar magnetospheric emission in this frequency range, it is possible that the spectrum is predominantly magnetospheric (power law with alpha<0) in the optical while it is dominated by thermal emission from the neutron star surface in the FUV. For a neutron star radius of 12 km, the surface temperature would be between 0.5x10^5 and 2.1x10^5 K, for alpha ranging from -1 to 0, E(B-V)=0.01-0.08, and d=340-500 pc. In addition to the pulsar, the FUV images reveal extended emission spatially coincident with the known Halpha bow shock, making PSR J2124-3358 the second pulsar (after PSR J0437-4715) with a bow shock detected in FUV.
71 - Sangin Kim 2020
In this work, we study the X-ray bow-shock nebula powered by the mature pulsar PSR B1929+10 using data from XMM-Newton, with an effective exposure of $sim$ 300 ks, offering the deepest investigation of this system thus far. We found the X-ray axial o utflow extends as long as $sim$ 8 arc minute behind the proper motion direction, which is a factor of two longer than the result reported in the previous study. Furthermore, we found evidence of two faint lateral outflows extending laterally with respect to the proper motion. We also found indications of spectral hardening along the axial outflow, suggesting that certain acceleration processes might occur along this feature.
143 - T. Ueta 2006
We present the first results of the MIRIAD (MIPS [Multiband Imaging Photometer for Spitzer] Infra-Red Imaging of AGB [asymptotic giant branch] Dustshells) project using the Spitzer Space Telescope. The primary aim of the project is to probe the mater ial distribution in the extended circumstellar envelopes (CSE) of evolved stars and recover the fossil record of their mass loss history. Hence, we must map the whole of the CSEs plus the surrounding sky for background subtraction, while avoiding the central star that is brighter than the detector saturation limit. With our unique mapping strategy, we have achieved better than one MJy/sr sensitivity in three hours of integration and successfully detected a faint (< 5 MJy/sr), extended (~400 arcsec) far-infrared nebula around the AGB star R Hya. Based on the parabolic structure of the nebula, the direction of the space motion of the star with respect to the nebula shape, and the presence of extended H alpha emission co-spatial to the nebula, we suggest that the detected far-IR nebula is due to a bow shock at the interface of the interstellar medium and the AGB wind of this moving star. This is the first detection of the stellar-wind bow-shock interaction for an AGB star and exemplifies the potential of Spitzer as a tool to examine the detailed structure of extended far-IR nebulae around bright central sources.
101 - Zhixuan Li , Jun Yang , Tao An 2018
Newtons gravitational constant $G$ may vary with time at an extremely low level. The time variability of $G$ will affect the orbital motion of a millisecond pulsar in a binary system and cause a tiny difference between the orbital period-dependent me asurement of the kinematic distance and the direct measurement of the annual parallax distance. PSR J0437$-$4715 is the nearest millisecond pulsar and the brightest at radio. To explore the feasibility of achieving a parallax distance accuracy of one light-year, comparable to the recent timing result, with the technique of differential astrometry, we searched for compact radio sources quite close to PSR J0437$-$4715. Using existing data from the Very Large Array and the Australia Telescope Compact Array, we detected two sources with flat spectra, relatively stable flux densities of 0.9 and 1.0 mJy at 8.4 GHz and separations of 13 and 45 arcsec. With a network consisting of the Long Baseline Array and the Kunming 40-m radio telescope, we found that both sources have a point-like structure and a brightness temperature of $geq$10$^7$ K. According to these radio inputs and the absence of counterparts in the other bands, we argue that they are most likely the compact radio cores of extragalactic active galactic nuclei rather than Galactic radio stars. The finding of these two radio active galactic nuclei will enable us to achieve a sub-pc distance accuracy with the in-beam phase-referencing very-long-baseline interferometric observations and provide one of the most stringent constraints on the time variability of $G$ in the near future.
Intensity scintillations of radio pulsars are known to originate from interference between waves scattered by the electron density irregularities of interstellar plasma, often leading to parabolic arcs in the two-dimensional power spectrum of the rec orded dynamic spectrum. The degree of arc curvature depends on the distance to the scattering plasma and its transverse velocity with respect to the line-of-sight. We report the observation of annual and orbital variations in the curvature of scintillation arcs over a period of 16 years for the bright millisecond pulsar, PSR J0437-4715. These variations are the signature of the relative transverse motions of the Earth, pulsar, and scattering medium, which we model to obtain precise measurements of parameters of the pulsars binary orbit and the scattering medium itself. We observe two clear scintillation arcs in most of our $>$5000 observations and we show that they originate from scattering by thin screens located at distances $D_1 = 89.8 pm 0.4$ pc and $D_2 = 124 pm 3$ pc from Earth. The best-fit scattering model we derive for the brightest arc yields the pulsars orbital inclination angle $i = 137.1 pm 0.3^circ$, and longitude of ascending node, $Omega=206.3pm0.4^circ$. Using scintillation arcs for precise astrometry and orbital dynamics can be superior to modelling variations in the diffractive scintillation timescale, because the arc curvature is independent of variations in the level of turbulence of interstellar plasma. This technique can be used in combination with pulsar timing to determine the full three-dimensional orbital geometries of binary pulsars, and provides parameters essential for testing theories of gravity and constraining neutron star masses.
التعليقات (0)
no comments...
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا