ترغب بنشر مسار تعليمي؟ اضغط هنا

Distance and extinction determination for APOGEE stars with Bayesian method

96   0   0.0 ( 0 )
 نشر من قبل Jianling Wang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jianling Wang




اسأل ChatGPT حول البحث

Using a Bayesian technology we derived distances and extinctions for over 100,000 red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey by taking into account spectroscopic constraints from the APOGEE stellar parameters and photometric constraints from 2MASS, as well as a prior knowledge on the Milky Way. Derived distances are compared with those from four other independent methods, the Hipparcos parallaxes, star clusters, APOGEE red clump stars, and asteroseismic distances from APOKASC (Rodrigues et al. 2014) and SAGA Catalogues (Casagrande et al. 2014). These comparisons covers four orders of magnitude in the distance scale from 0.02 kpc to 20 kpc. The results show that our distances agree very well with those from other methods: the mean relative difference between our Bayesian distances and those derived from other methods ranges from -4.2% to +3.6%, and the dispersion ranges from 15% to 25%. The extinctions toward all stars are also derived and compared with those from several other independent methods: the Rayleigh-Jeans Color Excess (RJCE) method, Gonzalezs two-dimensional extinction map, as well as three-dimensional extinction maps and models. The comparisons reveal that, overall, estimated extinctions agree very well, but RJCE tends to overestimate extinctions for cool stars and objects with low logg.



قيم البحث

اقرأ أيضاً

Highly reddened type Ia Supernovae (SNe Ia) with low total-to-selective visual extinction ratio values, $R_V$, also show peculiar linear polarization wavelength dependencies with peak polarizations at short wavelengths ($lambda_{max} lesssim 0.4 mu m $). It is not clear why sightlines to SNe Ia display such different continuum polarization profiles from interstellar sightlines in the Milky Way with similar $R_V$ values. We investigate polarization profiles of a sample of Galactic stars with low $R_V$ values, along anomalous extinction sightlines, with the aim to find similarities to the polarization profiles that we observe in SN Ia sightlines. We undertook spectropolarimetry of 14 stars, and used archival data for three additional stars, and run dust extinction and polarization simulations to infer a simple dust model that can reproduce the observed extinction and polarization curves. Our sample of Galactic stars with low $R_V$ values and anomalous extinction sightlines displays normal polarization profiles with an average $lambda_{max} sim 0.53 {mu m}$, and is consistent within 3$sigma$ to a larger coherent sample of Galactic stars from literature. Despite the low $R_V$ values of dust towards the stars in our sample, the polarization curves do not show any similarity to the continuum polarization curves observed towards SNe Ia with low $R_V$ values. There is a correlation between the best-fit Serkowski parameters $K$ and $lambda_{max}$, but we did not find any significant correlation between $R_V$ and $lambda_{max}$. Our simulations show that the $K-lambda_{max}$ relationship is an intrinsic property of polarization. Furthermore, we have shown that in order to reproduce polarization curves with normal $lambda_{max}$ and low $R_V$ values, a population of large (a $geq 0.1 mu m$) interstellar silicate grains must be contained in the dusts composition.
142 - B. Burnett , J. Binney , S. Sharma 2011
We apply the method of Burnett & Binney (2010) for the determination of stellar distances and parameters to the internal catalogue of the Radial Velocity Experiment (Steinmetz et al. 2006). Subsamples of stars that either have Hipparcos parallaxes or belong to well-studied clusters, inspire confidence in the formal errors. Distances to dwarfs cooler than ~6000 K appear to be unbiased, but those to hotter dwarfs tend to be too small by ~10% of the formal errors. Distances to giants tend to be too large by about the same amount. The median distance error in the whole sample of 216,000 stars is 28% and the error distribution is similar for both giants and dwarfs. Roughly half the stars in the RAVE survey are giants. The giant fraction is largest at low latitudes and in directions towards the Galactic Centre. Near the plane the metallicity distribution is remarkably narrow and centred on [M/H]-0.04 dex; with increasing |z| it broadens out and its median moves to [M/H] ~ -0.5. Mean age as a function of distance from the Galactic centre and distance |z| from the Galactic plane shows the anticipated increase in mean age with |z|.
119 - J.J. Stead , M.G. Hoare 2010
Using near infrared UKIDSS Galactic Plane Survey data, we make extinction measurements to individual stars along the same line of sight as molecular clouds. Using an existing 3D extinction map of the inner Galaxy, that provides line of sight specific extinction-distance relationships, we convert the measured extinction of molecular clouds to a corresponding distance. These distances are derived independently from kinematic methods, typically used to derive distances to molecular clouds, and as such they have no near/far ambiguity. The near/far distance ambiguity has been resolved for 27 clouds and distances have been derived to 20 clouds. The results are found to be in good agreement with kinematic measurements to molecular clouds where the ambiguity has already been resolved, using HI self-absorption techniques.
184 - H. Zhao , B. W. Jiang , S. Gao 2018
Supernova remnants (SNRs) embody the information of the influence on dust properties by the supernova explosion. Based on the color indexes from the 2MASS photometric survey and the stellar parameters from the SDSS$-$DR12$/$APOGEE and LAMOST$-$DR2$/$ LEGUE spectroscopic surveys, the near-infrared extinction law and the distance of the Monoceros SNR are derived together with its nearby two nebulas -- the Rosette Nebula and NGC 2264. The distance is found at the position of the sharp increase of interstellar extinction with distance and the nebular extinction is calculated by subtracting the foreground interstellar extinction. The distance of the Monoceros SNR is determined to be $1.98,$kpc, larger than previous values. Meanwhile, the distance of the Rosette Nebula is $1.55,$kpc, generally consistent with previous work. The distance between these two nebulas suggests no interaction between them. The distance of NGC 2264, $1.20,$kpc, exceeds previous values. The color excess ratio, $E_{rm JH}/E_{rm JK_S}$, is 0.657 for the Monoceros SNR, consistent with the average value 0.652 for the Milky Way (Xue et al. 2016). The consistency is resulted from that the SNR material is dominated by interstellar dust rather than the supernova ejecta. $E_{rm JH}/E_{rm JK_S}$ equals to 0.658 for the Rosette Nebula, further proving the universality of the near-infrared extinction law.
Based on the accurate color excess $E_{rm G_{BP},G_{RP}}$ of more than 4 million stars and $E_{rm NUV,G_{BP}}$ of more than 1 million stars from citet{2021ApJS..254...38S}, the distance and the extinction of the molecular clouds in the MBM catalog at $|b|>20^{circ}$ are studied in combination with the distance measurement of emph{Gaia}/EDR3. The distance as well as the color excess is determined for 66 molecular clouds. The color excess ratio $E_{rm G_{BP},G_{RP}}/E_{rm NUV,G_{BP}}$ is derived for 39 of them, which is obviously larger and implies more small particles at smaller extinction. In addition, the scale height of the dust disk is found to be about 100 pc and becomes large at the anticenter direction due to the disk flaring.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا