ترغب بنشر مسار تعليمي؟ اضغط هنا

Kernel-based Reconstruction of Graph Signals

111   0   0.0 ( 0 )
 نشر من قبل Daniel Romero
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

A number of applications in engineering, social sciences, physics, and biology involve inference over networks. In this context, graph signals are widely encountered as descriptors of vertex attributes or features in graph-structured data. Estimating such signals in all vertices given noisy observations of their values on a subset of vertices has been extensively analyzed in the literature of signal processing on graphs (SPoG). This paper advocates kernel regression as a framework generalizing popular SPoG modeling and reconstruction and expanding their capabilities. Formulating signal reconstruction as a regression task on reproducing kernel Hilbert spaces of graph signals permeates benefits from statistical learning, offers fresh insights, and allows for estimators to leverage richer forms of prior information than existing alternatives. A number of SPoG notions such as bandlimitedness, graph filters, and the graph Fourier transform are naturally accommodated in the kernel framework. Additionally, this paper capitalizes on the so-called representer theorem to devise simpl



قيم البحث

اقرأ أيضاً

The problem of graph learning concerns the construction of an explicit topological structure revealing the relationship between nodes representing data entities, which plays an increasingly important role in the success of many graph-based representa tions and algorithms in the field of machine learning and graph signal processing. In this paper, we propose a novel graph learning framework that incorporates the node-side and observation-side information, and in particular the covariates that help to explain the dependency structures in graph signals. To this end, we consider graph signals as functions in the reproducing kernel Hilbert space associated with a Kronecker product kernel, and integrate functional learning with smoothness-promoting graph learning to learn a graph representing the relationship between nodes. The functional learning increases the robustness of graph learning against missing and incomplete information in the graph signals. In addition, we develop a novel graph-based regularisation method which, when combined with the Kronecker product kernel, enables our model to capture both the dependency explained by the graph and the dependency due to graph signals observed under different but related circumstances, e.g. different points in time. The latter means the graph signals are free from the i.i.d. assumptions required by the classical graph learning models. Experiments on both synthetic and real-world data show that our methods outperform the state-of-the-art models in learning a meaningful graph topology from graph signals, in particular under heavy noise, missing values, and multiple dependency.
An emerging way of tackling the dimensionality issues arising in the modeling of a multivariate process is to assume that the inherent data structure can be captured by a graph. Nevertheless, though state-of-the-art graph-based methods have been succ essful for many learning tasks, they do not consider time-evolving signals and thus are not suitable for prediction. Based on the recently introduced joint stationarity framework for time-vertex processes, this letter considers multivariate models that exploit the graph topology so as to facilitate the prediction. The resulting method yields similar accuracy to the joint (time-graph) mean-squared error estimator but at lower complexity, and outperforms purely time-based methods.
We introduce a family of multilayer graph kernels and establish new links between graph convolutional neural networks and kernel methods. Our approach generalizes convolutional kernel networks to graph-structured data, by representing graphs as a seq uence of kernel feature maps, where each node carries information about local graph substructures. On the one hand, the kernel point of view offers an unsupervised, expressive, and easy-to-regularize data representation, which is useful when limited samples are available. On the other hand, our model can also be trained end-to-end on large-scale data, leading to new types of graph convolutional neural networks. We show that our method achieves competitive performance on several graph classification benchmarks, while offering simple model interpretation. Our code is freely available at https://github.com/claying/GCKN.
We propose a novel graph clustering method guided by additional information on the underlying structure of the clusters (or communities). The problem is formulated as the matching of a graph to a template with smaller dimension, hence matching $n$ ve rtices of the observed graph (to be clustered) to the $k$ vertices of a template graph, using its edges as support information, and relaxed on the set of orthonormal matrices in order to find a $k$ dimensional embedding. With relevant priors that encode the density of the clusters and their relationships, our method outperforms classical methods, especially for challenging cases.
Outlier detection methods have become increasingly relevant in recent years due to increased security concerns and because of its vast application to different fields. Recently, Pauwels and Lasserre (2016) noticed that the sublevel sets of the invers e Christoffel function accurately depict the shape of a cloud of data using a sum-of-squares polynomial and can be used to perform outlier detection. In this work, we propose a kernelized variant of the inverse Christoffel function that makes it computationally tractable for data sets with a large number of features. We compare our approach to current methods on 15 different data sets and achieve the best average area under the precision recall curve (AUPRC) score, the best average rank and the lowest root mean square deviation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا