ﻻ يوجد ملخص باللغة العربية
State-of-the-art algorithms for imaging inverse problems (namely deblurring and reconstruction) are typically iterative, involving a denoising operation as one of its steps. Using a state-of-the-art denoising method in this context is not trivial, and is the focus of current work. Recently, we have proposed to use a class-adapted denoiser (patch-based using Gaussian mixture models) in a so-called plug-and-play scheme, wherein a state-of-the-art denoiser is plugged into an iterative algorithm, leading to results that outperform the best general-purpose algorithms, when applied to an image of a known class (e.g. faces, text, brain MRI). In this paper, we extend that approach to handle situations where the image being processed is from one of a collection of possible classes or, more importantly, contains regions of different classes. More specifically, we propose a method to locally select one of a set of class-adapted Gaussian mixture patch priors, previously estimated from clean images of those classes. Our approach may be seen as simultaneously performing segmentation and restoration, thus contributing to bridging the gap between image restoration/reconstruction and analysis.
This paper proposes using a Gaussian mixture model as a prior, for solving two image inverse problems, namely image deblurring and compressive imaging. We capitalize on the fact that variable splitting algorithms, like ADMM, are able to decouple the
We propose a holographic image restoration method using an autoencoder, which is an artificial neural network. Because holographic reconstructed images are often contaminated by direct light, conjugate light, and speckle noise, the discrimination of
Image restoration tasks demand a complex balance between spatial details and high-level contextualized information while recovering images. In this paper, we propose a novel synergistic design that can optimally balance these competing goals. Our mai
Convolutional neural network has recently achieved great success for image restoration (IR) and also offered hierarchical features. However, most deep CNN based IR models do not make full use of the hierarchical features from the original low-quality
Ill-posed inverse problems appear in many image processing applications, such as deblurring and super-resolution. In recent years, solutions that are based on deep Convolutional Neural Networks (CNNs) have shown great promise. Yet, most of these tech