ترغب بنشر مسار تعليمي؟ اضغط هنا

Social and Spatial Clustering of People at Humanitys Largest Gathering

172   0   0.0 ( 0 )
 نشر من قبل Ian Barnett
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

Macroscopic behavior of scientific and societal systems results from the aggregation of microscopic behaviors of their constituent elements, but connecting the macroscopic with the microscopic in human behavior has traditionally been difficult. Manifestations of homophily, the notion that individuals tend to interact with others who resemble them, have been observed in many small and intermediate size settings. However, whether this behavior translates to truly macroscopic levels, and what its consequences may be, remains unknown. Here, we use call detail records (CDRs) to examine the population dynamics and manifestations of social and spatial homophily at a macroscopic level among the residents of 23 states of India at the Kumbh Mela, a 3-month-long Hindu festival. We estimate that the festival was attended by 61 million people, making it the largest gathering in the history of humanity. While we find strong overall evidence for both types of homophily for residents of different states, participants from low-representation states show considerably stronger propensity for both social and spatial homophily than those from high-representation states. These manifestations of homophily are amplified on crowded days, such as the peak day of the festival, which we estimate was attended by 25 million people. Our findings confirm that homophily, which here likely arises from social influence, permeates all scales of human behavior.



قيم البحث

اقرأ أيضاً

There is an increased appreciation for, and utilization of, social networks to disseminate various kinds of interventions in a target population. Homophily, the tendency of people to be similar to those they interact with, can create within-group coh esion but at the same time can also lead to societal segregation. In public health, social segregation can form barriers to the spread of health interventions from one group to another. We analyzed the structure of social networks in 75 villages in Karnataka, India, both at the level of individuals and network communities. We found all villages to be strongly segregated at the community level, especially along the lines of caste and sex, whereas other socioeconomic variables, such as age and education, were only weakly associated with these groups in the network. While the studied networks are densely connected, our results indicate that the villages are highly segregated.
In this article we identify social communities among gang members in the Hollenbeck policing district in Los Angeles, based on sparse observations of a combination of social interactions and geographic locations of the individuals. This information, coming from LAPD Field Interview cards, is used to construct a similarity graph for the individuals. We use spectral clustering to identify clusters in the graph, corresponding to communities in Hollenbeck, and compare these with the LAPDs knowledge of the individuals gang membership. We discuss different ways of encoding the geosocial information using a graph structure and the influence on the resulting clusterings. Finally we analyze the robustness of this technique with respect to noisy and incomplete data, thereby providing suggestions about the relative importance of quantity versus quality of collected data.
We consider processes on social networks that can potentially involve three factors: homophily, or the formation of social ties due to matching individual traits; social contagion, also known as social influence; and the causal effect of an individua ls covariates on their behavior or other measurable responses. We show that, generically, all of these are confounded with each other. Distinguishing them from one another requires strong assumptions on the parametrization of the social process or on the adequacy of the covariates used (or both). In particular we demonstrate, with simple examples, that asymmetries in regression coefficients cannot identify causal effects, and that very simple models of imitation (a form of social contagion) can produce substantial correlations between an individuals enduring traits and their choices, even when there is no intrinsic affinity between them. We also suggest some possible constructive responses to these results.
During the COVID-19 crisis there have been many difficult decisions governments and other decision makers had to make. E.g. do we go for a total lock down or keep schools open? How many people and which people should be tested? Although there are man y good models from e.g. epidemiologists on the spread of the virus under certain conditions, these models do not directly translate into the interventions that can be taken by government. Neither can these models contribute to understand the economic and/or social consequences of the interventions. However, effective and sustainable solutions need to take into account this combination of factors. In this paper, we propose an agent-based social simulation tool, ASSOCC, that supports decision makers understand possible consequences of policy interventions, bu exploring the combined social, health and economic consequences of these interventions.
According to personality psychology, personality traits determine many aspects of human behaviour. However, validating this insight in large groups has been challenging so far, due to the scarcity of multi-channel data. Here, we focus on the relation ship between mobility and social behaviour by analysing trajectories and mobile phone interactions of $sim 1,000$ individuals from two high-resolution longitudinal datasets. We identify a connection between the way in which individuals explore new resources and exploit known assets in the social and spatial spheres. We show that different individuals balance the exploration-exploitation trade-off in different ways and we explain part of the variability in the data by the big five personality traits. We point out that, in both realms, extraversion correlates with the attitude towards exploration and routine diversity, while neuroticism and openness account for the tendency to evolve routine over long time-scales. We find no evidence for the existence of classes of individuals across the spatio-social domains. Our results bridge the fields of human geography, sociology and personality psychology and can help improve current models of mobility and tie formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا