ﻻ يوجد ملخص باللغة العربية
Mathematical models of cholera and waterborne disease vary widely in their structures, in terms of transmission pathways, loss of immunity, and other features. These differences may yield different predictions and parameter estimates from the same data. Given the increasing use of models to inform public health decision-making, it is important to assess distinguishability (whether models can be distinguished based on fit to data) and inference robustness (whether model inferences are robust to realistic variations in model structure). We examined the effects of uncertainty in model structure in epidemic cholera, testing a range of models based on known features of cholera epidemiology. We fit to simulated epidemic and long-term data, as well as data from the 2006 Angola epidemic. We evaluated model distinguishability based on data fit, and whether parameter values and forecasts can accurately be inferred from incidence data. In general, all models were able to successfully fit to all data sets, even if misspecified. However, in the long-term data, the best model fits were achieved when the loss of immunity form matched those of the model that simulated the data. Two transmission and reporting parameters were accurately estimated across all models, while the remaining showed broad variation across the different models and data sets. Forecasting efforts were not successful early, but once the epidemic peak had been achieved, most models showed similar accuracy. Our results suggest that we are unlikely to be able to infer mechanistic details from epidemic case data alone, underscoring the need for broader data collection. Nonetheless, with sufficient data, conclusions from forecasting and some parameter estimates were robust to variations in the model structure, and comparative modeling can help determine how variations in model structure affect conclusions drawn from models and data.
Multiple epidemiological models have been proposed to predict the spread of Ebola in West Africa. These models include consideration of counter-measures meant to slow and, eventually, stop the spread of the disease. Here, we examine one component of
We model and calculate the fraction of infected population necessary to reach herd immunity, taking into account the heterogeneity in infectiousness and susceptibility, as well as the correlation between those two parameters. We show that these cause
The contact structure of a population plays an important role in transmission of infection. Many ``structured models capture aspects of the contact structure through an underlying network or a mixing matrix. An important observation in such models, i
Between pandemics, the influenza virus exhibits periods of incremental evolution via a process known as antigenic drift. This process gives rise to a sequence of strains of the pathogen that are continuously replaced by newer strains, preventing a bu
Disease transmission is studied through disciplines like epidemiology, applied mathematics, and statistics. Mathematical simulation models for transmission have implications in solving public and personal health challenges. The SIR model uses a compa