ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive relic galaxies prefer dense environments

203   0   0.0 ( 0 )
 نشر من قبل Luis Peralta de Arriba
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the preferred environments of $z sim 0$ massive relic galaxies ($M_star gtrsim 10^{10}~mathrm{M_odot}$ galaxies with little or no growth from star formation or mergers since $z sim 2$). Significantly, we carry out our analysis on both a large cosmological simulation and an observed galaxy catalogue. Working on the Millennium I-WMAP7 simulation we show that the fraction of today massive objects which have grown less than 10 per cent in mass since $z sim 2$ is ~0.04 per cent for the whole massive galaxy population with $M_star > 10^{10}~mathrm{M_odot}$. This fraction rises to ~0.18 per cent in galaxy clusters, confirming that clusters help massive galaxies remain unaltered. Simulations also show that massive relic galaxies tend to be closer to cluster centres than other massive galaxies. Using the New York University Value-Added Galaxy Catalogue, and defining relics as $M_star gtrsim 10^{10}~mathrm{M_odot}$ early-type galaxies with colours compatible with single-stellar population ages older than 10 Gyr, and which occupy the bottom 5-percentile in the stellar mass-size distribution, we find $1.11 pm 0.05$ per cent of relics among massive galaxies. This fraction rises to $2.4 pm 0.4$ per cent in high-density environments. Our findings point in the same direction as the works by Poggianti et al. and Stringer et al. Our results may reflect the fact that the cores of the clusters are created very early on, hence the centres host the first cluster members. Near the centres, high-velocity dispersions and harassment help cluster core members avoid the growth of an accreted stellar envelope via mergers, while a hot intracluster medium prevents cold gas from reaching the galaxies, inhibiting star formation.



قيم البحث

اقرأ أيضاً

Black hole mass scaling relations suggest that extremely massive black holes (EMBHs) with $M_mathrm{BH}ge10^{9.4},M_{odot}$ are found in the most massive galaxies with $M_mathrm{star}ge10^{11.6},M_{odot}$, which are commonly found in dense environmen ts, like galaxy clusters. Therefore, one can expect that there is a close connection between active EMBHs and dense environments. Here, we study the environments of 9461 galaxies and 2943 quasars at $0.24 le z le 0.40$, among which 52 are extremely massive quasars with $log(M_mathrm{BH}/M_{odot}) ge 9.4$, using Sloan Digital Sky Survey and MMT Hectospec data. We find that, on average, both massive quasars and massive galaxies reside in environments more than $sim2$ times as dense as those of their less massive counterparts with $log(M_mathrm{BH}/M_{odot}) le 9.0$. However, massive quasars reside in environments about half as dense as inactive galaxies with $log(M_mathrm{BH}/M_{odot}) ge 9.4$, and only about one third of massive quasars are found in galaxy clusters, while about two thirds of massive galaxies reside in such clusters. This indicates that massive galaxies are a much better signpost for galaxy clusters than massive quasars. The prevalence of massive quasars in moderate to low density environments is puzzling, considering that several simulation results show that these quasars appear to prefer dense environments. Several possible reasons for this discrepancy are discussed, although further investigation is needed to obtain a definite explanation.
The finding that massive galaxies grow with cosmic time fired the starting gun for the search of objects which could have survived up to the present day without suffering substantial changes (neither in their structures, neither in their stellar popu lations). Nevertheless, and despite the community efforts, up to now only one firm candidate to be considered one of these relics is known: NGC 1277. Curiously, this galaxy is located at the centre of one of the most rich near galaxy clusters: Perseus. Is its location a matter of chance? Should relic hunters focus their search on galaxy clusters? In order to reply this question, we have performed a simultaneous and analogous analysis using simulations (Millennium I-WMAP7) and observations (New York University Value-Added Galaxy Catalogue). Our results in both frameworks agree: it is more probable to find relics in high density environments.
We investigate the role of dense Mpc-scale environment in processing molecular gas in distant Low luminosity radio galaxies (LLRGs) in galaxy (proto-)clusters. We have selected within the COSMOS and DES surveys a sample of five LLRGs at $z=0.4-2.6$ t hat show evidence of ongoing star formation on the basis of their far-infrared emission. We have assembled and modeled the far-infrared-to-ultraviolet spectral energy distributions (SEDs) of the LLRGs. We have observed the sources with the IRAM-30m telescope to search for CO emission. We have then searched for dense Mpc-scale overdensities associated with the LLRGs using photometric redshifts of galaxies and the Poisson Probability Method, that we have upgraded using the wavelet-transform ($mathit{w}$PPM), to characterize the overdensity in the projected space. Color-color and color-magnitude plots have been derived for the fiducial cluster members. We set upper limits to the CO emission of the LLRGs, at $z=0.39, 0.61, 0.91, 0.97$, and $2.6$. For the most distant radio source, COSMOS-FRI 70 at $z=2.6$, a hint of CO(7$rightarrow$6) emission is found at 2.2$sigma$. The upper limits found for the molecular gas content $M({rm H}_2)/M_star<0.11$, 0.09, 1.8, 1.5, and 0.29, respectively, and depletion time $tau_{rm dep}lesssim(0.2-7)$ Gyr of the five LLRGs are overall consistent with the values of main sequence field galaxies. Our SED modeling implies large stellar masses for the LLRGs, in the range $log(M_star/M_odot)=10.9-11.5$, while the associated Mpc-scale overdensities show a complex morphology. The color-color and color-magnitude plots suggest that the LLRGs are consistent with being star forming and on the high-luminosity tail of the red sequence. The present study increases the limited statistics of distant cluster core galaxies with CO observations. The radio galaxies of this work are excellent targets for ALMA and JWST.
94 - Yongmin Yoon , Myungshin Im , 2016
Under the $Lambda$ cold dark matter ($Lambda$CDM) cosmological models, massive galaxies are expected to be larger in denser environments through frequent hierarchical mergers with other galaxies. Yet, observational studies of low-redshift early-type galaxies have shown no such trend, standing as a puzzle to solve during the past decade. We analyzed 73,116 early-type galaxies at $0.1leq z < 0.15$, adopting a robust nonparametric size measurement technique and extending the analysis to many massive galaxies. We find for the first time that local early-type galaxies heavier than $10^{11.2}M_{odot}$ show a clear environmental dependence in mass-size relation, in such a way that galaxies are as much as 20-40% larger in densest environments than in underdense environments. Splitting the sample into the brightest cluster galaxies (BCGs) and non-BCGs does not affect the result. This result agrees with the $Lambda$CDM cosmological simulations and suggests that mergers played a significant role in the growth of massive galaxies in dense environments as expected in theory.
In order to understand nature of building blocks of galaxies in the early universe, we investigate genuine irregular galaxies (GIGs) in the nearby universe. Here, GIGs are defined as isolated galaxies without regular structures (spheroid, bulge, disk , bar, spiral arm, and nucleus). Using the results of two excellent studies on galaxy morphology based on the Sloan Digital Sky Survey (SDSS), we obtain a sample of 66 irregular galaxies. We carry out new classification of them into GIGs and non-GIGs which have regular structure or show evidence for galaxy interaction, by using the SDSS Data Release 10 images. We then find that a half of these irregular galaxies (33/66) are GIGs and obtain an unambiguous sample of 33 GIGs for the first time. We discuss their observational properties by comparing them with those of elliptical, S0, spiral galaxies, and irregular galaxies without the GIGs. We find that our GIGs have smaller sizes, lower optical luminosities, bluer rest-frame optical colors, lower surface stellar mass densities, and lower gas metallicity than normal galaxies. All these properties suggest that they are in chemically and dynamically younger phases even in the nearby universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا